/O Programming

Java /O (Input and Output) is used to process the input and produce the output.

Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the classes required
for input and output operations.

We can perform file handling in Java by Java I/O API.

Java brings various Streams with its I/O package that helps the user to perform all the input-output operations.
These streams support all the types of objects, data-types, characters, files etc to fully execute the I/O operations.

Stream

A stream can be defined as a sequence of data. In Java, a stream is composed of bytes. It's called a stream because
it is like a stream of water that continues to flow. There are two kinds of Streams -

*InPutStream - The InputStream is used to read data from a source.

*OutPutStream — The OutputStream is used for writing data to a destination.

4 &
Inputstream Outputstream
JAVA
APPLICATION
READ Write

Moy o

https://www.geeksforgeeks.org/java/

Types of Streams:
‘Depending on the type of operations, streams can be divided into two primary classes:
» Input Stream: These streams are used to read data that must be taken as an input from a source array or file
or any peripheral device. For eg., FilelnputStream, BufferedinputStream, ByteArraylnputStream etc.

« Output Stream: These streams are used to write data as outputs into an array or file or monitor or any output
peripheral device. For eg., FileOutputStream, BufferedOutputStream, ByteArrayOutputStream etc.

Depending on the types of file(the data a stream holds), Streams can be divided into two primary classes:
ByteStream,CharacterStream.

BufferedinputStream = > BufferedReader
DatalnputStream =« > FileReader
FilelnputStream + » |nputStreamReader

InputStream < » OutputStreamReader
PrintStream -« ' —> Reader
— ByteStream <«— Streams —— CharacterStream—

BufferedOutputStream «— — PrintWriter
DataOutputStream <« > Writer
FileOutputStream =« > BufferedWriter

OutputStream < > FileWriter

https://www.geeksforgeeks.org/java-io-inputstream-class-in-java/
https://www.geeksforgeeks.org/java-io-outputstream-class-java/

ByteStream: This is used to process data byte by byte (8 bits). Though it has many classes, the FilelnputStream
and the FileOutputStream are the most popular ones. The FilelnputStream is used to read from the source and
FileOutputStream is used to write to the destination.

Byte stream is used to read and write a single byte (8 bits) of data.

All byte stream classes are derived from base abstract classes called InputStream and OutputStream.

Here is the list of various ByteStream Classes:

Stream class Description

BufferedlnputStream It is used for Buffered Input Stream.

DatalnputStream It contains method for reading java standard datatypes.
FilelnputStream This is used to reads from a file

InputStream This is an abstract class that describes stream input.
PrintStream This contains the most used print() and println() method

BufferedOutputStream Thisis used for Buffered Output Stream.

DataQutputStream This contains method for writing java standard data types.

FileQutputStream This is used to write to a file.

OutputStream This is an abstract class that describe stream output.

CharacterStream: In Java, characters are stored using Unicode conventions . Character stream automatically allows
us to read/write data character by character. Though it has many classes, the FileReader and the FileWriter are the
most popular ones. FileReader and FileWriter are character streams used to read from the source and write to the
destination respectively.

Character stream is used to read and write a single character of data.

All the character stream classes are derived from base abstract classes Reader and Writer.

Here is the list of varig

Stream class Description
BufferedReader Itis used to handle buffered input stream.
FileReader Thisis aninput stream that reads from file.

InputStreamReader Thisinput stream is used to translate byte to character.

OutputStreamReader This output stream is used to translate character to byte.

Reader Thisis an abstract class that define character stream input.
PrintWriter This contains the most used print() and printtn() method
Writer Thisis an abstract class that define character stream output.
BufferedWriter Thisis used to handle buffered output stream.

FileWriter This is used to output stream that writes to file.

FileInputStream

This class reads the data from a specific file (byte by byte). It is usually used to read the contents of a file with raw
bytes, such as images.

To read the contents of a file using this class -
*First of all, you need to instantiate this class by passing a String variable(path of file) or a File object, representing the
path of the file to be read.

FileInputStream inputStream = new FileInputStream(“"file path™);

or,

File file = new File("file path");

FileInputStream inputStream = new FileInputStream(file);

*Then read the contents of the specified file using either of the variants of read() method -

» int read() — This simply reads data from the current InputStream and returns the read data byte by byte (in
integer format).

« This method returns -1 if the end of the file is reached.

» int read(byte[] b) — This method accepts a byte array as parameter and reads the contents of the current
InputStream, to the given array

» This method returns an integer representing the total number of bytes or, -1 if the end of the file is reached.

* int read(byte[] b, int off, int len) — This method accepts a byte array, its offset (int) and, its length (int) as
parameters and reads the contents of the current InputStream, to the given array.

« This method returns an integer representing the total number of bytes or, -1 if the end of the file is reached.

read() Method:

sread() - reads a single byte from the file

sread(byte[] array) - reads the bytes from the file and stores in the specified array

sread(byte[] array, int start, int length) - reads the number of bytes equal to length from the file and stores in the

specified array starting from the position start.

import java.io.FileInputStream;
public class Main {

static void main(String args[]1) {

.FileInputStream input = new FileInputStream("input.txt");

System.out.println("Data in the file: "); Data in the file-

This is a line of text inside the file.

// Reads the first byte
int 1 = input.read();

while(i '= -1) {
System.out.print((char)i);

// Reads next byte from the file close() Method
i = input.read(); To close the file input stream, we can use the close() method.

} _ Once the close() method is called, we cannot use the input stream
AU EEEE 0L to read data.

r
1

e.getStackTrace();

available() Method
To get the number of available bytes, we can use the available() method.

FileInputStream input = FileInputStream("input.txt");

// Returns the number of available bytes
System.out.println("Available bytes at the beginning: " + 1nput.available());

// Reads 3 bytes from the file Available bytes at the beginning: 39

input.read(); Available bytes at the end: 36

input.read();
input.read();

// Returns the number of available bytes
System.out.println("Available bytes at the end: " + input.available());

skip() Method

To discard and skip the specified number of bytes, we can use the skip() method.
FileInputStream input = FileInputStream("input.txt"”);

// Skips the 5 bytes

input.skip(5);
System.out.println("Input stream after skipping 5 bytes:");

/7 Reads the first byte ?nput stream after.sk?pping 5 ?ytes:
i = input.read(); 1s a line of text inside the file.

(1 1= -1) {
System.out.print(() 1)

// Reads next byte from the file
i = input.read();

FileOutputStream class
void write(byte[] ary) It is used to write ary.length bytes from the byte array to the file output stream.

void write(byte[] ary, int off, int It is used to write len bytes from the byte array starting at offset off to the file

len) output stream.

void write(int b) It is used to write the specified byte to the file output stream.

import java.io.FileOutputStream;
public class FileOutputStreamExample {
public static void main(String args[]){
try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt");
String s="Welcome to javaTpoint.”;
byte b[]=s.getBytes();//converting string into byte array
fout.write(b);
fout.close();
System.out.printin("success...”);

}catch(Exception e){System.out.printin(e);}

FileReader
FileReader is useful to read data in the form of characters from a ‘text’ file.
*This class inherit from the Reader Class.
*FileReader is meant for reading streams of characters. For reading streams of raw bytes, consider using a

CHepHietsaM

*FileReader(File file) — Creates a FileReader , given the File to read from
*FileReader(String fileName) — Creates a new FileReader , given the name of the file to read from

Methods:

public int read () throws IOException — Reads a single character. This method will block until a character is
available, an 1/0O error occurs, or the end of the stream is reached.

public int read(char[] cbuff) throws IOException — Reads characters into an array. This method will block until
some input is available, an I/O error occurs, or the end of the stream is reached.

*public abstract int read(char[] buff, int off, int len) throws IOException —Reads characters into a portion of an
array. This method will block until some input is available, an 1/O error occurs, or the end of the stream is reached.
Parameters:

cbuf — Destination buffer

off — Offset at which to start storing characters

len — Maximum number of characters to read

*public void close() throws IOException closes the reader.

*public long skip(long n) throws IOException —Skips characters. This method will block until some characters are
available, an |/O error occurs, or the end of the stream is reached.

Parameters:

n — The number of characters to skip

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.IOException;

class ReadFile

{

public static void main(String[] args) throws IOException

{

// variable declaration
int ch;

// check if File exists or not
FileReader fr=null;

try
{
fr = new FileReader("text");
h
catch (FileNotFoundException fe)
{
System.out.println("File not found");
h

// read from FileReader till the end of file
while ((ch=fr.read())!=-1)
System.out.print((char)ch);

// close the file
fr.close();

FileWriter

FileWriter is useful to create a file writing characters into it.
*This class inherits from the Writer class.

FileWriter is meant for writing streams of characters. For writing streams of raw bytes, consider using a

FileOutputStream.
FileWriter creates the output file, if it is not present already.

import java.io.FileWriter;
public class FileWriterExample {
public static void main(String args[]){
try{
FileWriter fw=new FileWriter("D:\\testout.txt");
fw.write("Welcome to javaTpoint.");
fw.close();
}catch(Exception e){System.out.printin(e);}

System.out.printin("Success...");

try (

new FileReader("Notesl.txt");
new FileWriter("NotesZ.txt");

FileReader reader
FileWriter writer

) A

int charRead = -1;
while ((charRead = reader.read()) != -1) {

writer.write(charRead);
¥

} ecatech (IOException ex) {
System.err.println(ex);
h

Java DatalnputStream Class

Java DatalnputStream class allows an application to read primitive data from the input stream

independent wav.

Java DatalnputStream class Methods

Method

int read(byte[] b)

int read(byte[] b, int off, int len)
int readInt()

byte readByte()

char readChar()

double readDouble()

boolean readBoolean()

int skipBytes(int x)
String readUTF()

void readFully(byte[] b)

Description

It is used to read the number of bytes from the input stream.
It is used to read len bytes of data from the input stream.

It is used to read input bytes and return an int value.

It is used to read and return the one input byte.

It is used to read two input bytes and returns a char value.

It is used to read eight input bytes and returns a double value.

It is used to read one input byte and return true if byte is non zero, false if byte

Is zero.
It is used to skip over x bytes of data from the input stream.
It is used to read a string that has been encoded using the UTF-8 format.

It is used to read bytes from the input stream and store them into the buffer

array.

in a machine-

https://www.javatpoint.com/object-and-class-in-java

class DataOutputStreamDemo

{
public static void main(String args[]) throws IOException
{
//writing the data using DataOutputStream
try (DataOutputStream dout =
new DataOutputStream(new FileOutputStream("file.dat")))
{
dout.writeDouble(1.1);
dout.writeInt(55);
dout.writeBoolean(true);
dout.writeChar('4");
}
catch(FileNotFoundException ex)
{
System.out.println("Cannot Open the Output File");
return;
}
// reading the data back using DataInputStream
try (DataInputStream din =
new DataInputStream(new FileInputStream("file.dat")))
{
double a = din.readDouble();
int b = din.readInt();
boolean ¢ = din.readBoolean();
char d=din.readChar();
System.out.println("Values: "+ a + " "+ b + " "+ c+" " + d);
}
catch(FileNotFoundException e)
{
System.out.println("Cannot Open the Input File");
return;
}
}
}

Output:1.1 55 true 4

Java DataOutputStream Class
Java DataOutputStream class allows an application to write primitive Java data types to the output stream in a
machine-independent way.

Method Description
int size() It is used to return the number of bytes written to the data output stream.
void write(int b) It is used to write the specified byte to the underlying output stream.

void write(byte[] b, int off, int Itis used to write len bytes of data to the output stream.

len)

void writeBoolean(boolean v) It is used to write Boolean to the output stream as a 1-byte value.

void writeChar(int v) It is used to write char to the output stream as a 2-byte value.

void writeChars(String s) It is used to write string to the output stream as a sequence of characters.
void writeByte(int v) It is used to write a byte to the output stream as a 1-byte value.

void writeBytes(String s) It is used to write string to the output stream as a sequence of bytes.

void writelnt(int v) It is used to write an int to the output stream

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-tutorial

import java.io.*;
public class OutputExample {
public static void main(String[] args) throws IOException {

FileOutputStream file = new FileOutputStream(D:\\testout.txt);
DataOutputStream data = new DataOutputStream(file);
data.writelnt(65);
data.flush();
data.close();

System.out.printin("Succcess...”);

Java BufferedInputStream Class

Java BufferedlnputStream class is used to read information from stream. It internally uses buffer mechanism to make
the performance fast.

The important points about BufferedinputStream are:

‘When the bytes from the stream are skipped or read, the internal buffer automatically refilled from the contained
input stream, many bytes at a time.

*WWhen a BufferedinputStream is created. an internal buffer arrav is created.
Java BufferedInputStream class constructors

Constructor Description

BufferedInputStream(InputStream IS) It creates the BufferedinputStream and saves it argument, the input stream

IS, for later use.

BufferedinputStream(InputStream IS, int = It creates the BufferedinputStream with a specified buffer size and saves it

size) argument, the input stream IS, for later use.

Java BufferedInputStream class methods

Method Description

int available() It returns an estimate number of bytes that can be read from the input stream without

blocking by the next invocation method for the input stream.
int read() It read the next byte of data from the input stream.

int read(byte[] b, int off, It read the bytes from the specified byte-input stream into a specified byte array, starting

int In) with the given offset.
void close() It closes the input stream and releases any of the system resources associated with the
stream.

void reset() It repositions the stream at a position the mark method was last called on this input

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-8-stream
https://www.javatpoint.com/array-in-java

import java.io.*;

public class BufferedinputStreamExample{

public static void main(String args[]){

try{

FilelnputStream fin=new FilelnputStream("D:\\testout.txt");
BufferedinputStream bin=new BufferedInputStream(fin);
inti;
while((i=bin.read())!=-1){
System.out.print((char)i);
}
bin.close();
fin.close();

}catch(Exception e){System.out.printin(e);}

}
}

Java BufferedOutputStream Class

Java BufferedOutputStream class is used for buffering an output stream. It internally uses buffer to store data. It
adds more efficiency than to write data directly into a stream. So, it makes the performance fast. The flush() flushes
the data of one stream and send it into another. It is required if you have connected the one stream with another.

import java.io.*;

public class BufferedOutputStreamExample{

public static void main(String args[])throws Exception{
FileOutputStream fout=new FileOutputStream("D:\\testout.txt");
BufferedOutputStream bout=new BufferedOutputStream(fout);
String s="Welcome to javaTpoint.”;
byte b[]=s.getBytes();
bout.write(b);
bout.flush();
bout.close();
fout.close();

System.out.printIn("success");

https://www.javatpoint.com/object-and-class-in-java

Java SequencelnputStream Class
Java SequencelnputStream class is used to read data from multiple streams. It reads data sequentially (one by
Constructors of SequencelnputStream class

Constructor Description

SequencelnputStream(InputStream s1, creates a new input stream by reading the data of two input stream
InputStream s2) in order, first s1 and then s2.

SequencelnputStream(Enumeration e) creates a new input stream by reading the data of an enumeration

whose type is InputStream.

Methods of SequencelnputStream class

Method Description

int read() It is used to read the next byte of data from the input stream.

int read(byte[] ary, int off, int Itis used to read len bytes of data from the input stream into the array of bytes.

len)

int available() It is used to return the maximum number of byte that can be read from an input

stream.

void close() It is used to close the input stream.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/object-class
https://www.javatpoint.com/java-8-stream

import java.io.*;

class InputStreamExample {
public static void main(String args[])throws Exception{
FilelnputStream input1=new FilelnputStream("D:\\testin.txt");
FilelnputStream input2=new FilelnputStream("D:\\testout.txt");
SequencelnputStream inst=new SequencelnputStream(input1, input2);
int j;
while((j=inst.read())!=-1){

System.out.print((char)));

}
inst.close(); testin.txt:

inputi.close();

input2.close(); Welcome to Java IO Programming.

} testout.txt:

It is the example of Java SequenceInputStream class.

After executing the program, you will get following output:

Output:

Welcome to Java IO Programming. It is the example of Java SequenceInputStream class.

File class:

File handling is an important part of any application.
Java has several methods for creating, reading, updating, and deleting files.

The File class from the java.io package, allows us to work with files.
To use the File class, create an object of the class, and specify the filename or directory name

import java.io.File; // Import the File class
File myObj = new File("filename.txt" // Specify the filename

The File class has many useful methods for creating and getting information about files. For example:

Method Type Description

canRead() Boolean Tests whether the file is readable or not
canlirite() Boolean Tests whether the file is writable or not
createNewFile() Boolean Creates an empty file

delete() Boolean Deletes a file

exists() Boolean Tests whether the file exists

getName() String Returns the name of the file
getAbsolutePath() String Returns the absolute pathname of the file
length() Long Returns the size of the file in bytes

list() String[] Returns an array of the files in the directory

mkdir() Boolean Creates a directory

“i1Tdlc d 11IC
To create a file in Java, you can use the createNewFile() method. This method returns a boolean value: true if the

file was successfully created, and false if the file already exists. Note that the method is enclosed in
a try...catch block. This is necessary because it throws an IOException if an error occurs (if the file cannot be

created for some reason):

11

10.I0Exception // Import the IOException class to handle errors

import java.io.File // Import the File class

a]

import jav

public class CreatefFile
public static void main(String|[] args
try

File myObj = new File("filename.txt"

it (myObj.createNewFile
System.out.println("File created: " + myObj.getName
else
System.out.println("File already exists.”

catch (IOException e

System.out.println("An error occurred.”

e.printStackTrace

File created: filename.txt

To create a file in a specific directory (requires permission), specify the path of the file and use double backslashes
to escape the "\" character (for Windows). On Mac and Linux you can just write the path, like:
/Users/name/filename.txt

File myObj = new File("C:\\Users\\MyName\\filename.txt"

import java.io.File; // Import the File class

public class GetFilelInfo
public static void main(String|] args
File myObj = new File("filename.txt"
it (myObj.exists

System.out.println("File name: " + myObj.getName
System.out.println("Absolute path: " + myObj.getAbsolutePath
System.out.println("Writeable: " + myObj.canWrite
System.out.println("Readable ™ + myObj.canRead
System.out.println("File size in bytes " + myObj.length

else

System.out.println("The file does not exist.”

File name: filename.txt
Absolute path: C:\Users\MyName\filename.txt

Writeable: true

Readable: true

File size in bytes: ©

There are many available classes in the Java API that can be used to read and write files in Java:

FileReader, BufferedReader, Files, Scanner, FileInputStream, FileWriter, BufferedWriter,
FileOutputStream, etc.

Which one to use depends on the Java version you're working with and whether you need to read bytes or
characters, and the size of the file/lines etc.

Following is the example for reading data from the file using Scanner class:

import java.io.File; // Import the File class
import java.io.FileNotFoundException; // Import this class to handle errors

import java.util.Scanner; // Import the Scanner class to read text files

public class ReadFile {
public static void main(String[] args) {
try {

File myObj = new File("filename.txt");
Scanner myReader = new Scanner(myObj);
while (myReader.hasNextline()) {

String data = myReader.nextline();

System.out.println(data);

myReader.close();

} catch (FileNotFoundException e) {
System.out.println("An error occurred.");
e.printStackTrace();

Delete a File

To delete a file in Java, use the delete() method:

import java.io.File; // Import the File class
public class DeleteFile
public static void main(String[] args
File myObj = new File("filename.txt"
if (myObj.delete
System.out.println("Deleted the file:

+ myObj.getName
else
System.out.println("Failed to delete the file.™

Deleted the file: filename.txt

Delete a Folder

import java.io.File

public class DeleteFolder
public static void main(String[] args
File myObj = new File("C:\\Users\\MyName\\Test"
it (myObj.delete

System.out.println("Deleted the folder:

v

+ myObj.getName
else
System.out.println("Failed to delete the folder.”

Deleted the folder: Test

Java - RandomAccessFile

This class is used for reading and writing to random access file. In java, the java.io package has a built-in
class RandomAccessFile that enables a file to be accessed randomly. The RandomAccessFile class has several
methods used to move the cursor position in a file.If end-of-file is reached before the desired number of byte has been
read than EOFException is thrown. It is a type of IOException.

Constructor Description

RandomAccessFile(File file, String Creates a random access file stream to read from, and optionally to write to,

mode) the file specified by the File argument.
RandomAccessFile(String name, Creates a random access file stream to read from, and optionally to write to,
String mode) a file with the specified name.

Access Modes

Using the RandomAccessFile, a file may created in th following modes.

r - Creates the file with read mode; Calling write methods will result in an IOException.

* rw - Creates the file with read and write mode.

* rwd - Creates the file with read and write mode - synchronously. All updates to file content is written to the disk synchronously.
* rws - Creates the file with read and write mode - synchronously. All updates to file content or meta data is written to the disk

synchronously.

https://www.javatpoint.com/object-class
https://www.javatpoint.com/throw-keyword

RandomAccessFile meth Methods with Description

int read()
It reads byte of data from a file. The byte is returned as an integer in the range 0-255.

int read(bytell b)
It reads byte of data from file upto b.length, -1 if end of file is reached.

int read(bytell b, int offset, int len)
It reads bytes initialising from offset position upto b.length from the buffer.

boolean readBoolean()
It reads a boolean value from from the file.

byte readByte()
It reads signed eight-bit value from file.

char readChar()
It reads a character value from file.

double readDouble()
It reads a double value from file.

float readFloat()
It reads a float value from file.

long readlLong()
It reads a long value from file.

10

11

12

13

14

15

16

17

18

int readint()
It reads a integer value from file.

void readFully(bytel] b)
It reads bytes initialising from offset position upto b.length from the buffer.

void readFully(bytell b, int offset, int len)
It reads bytes initialising from offset position upto b.length from the buffer.

String readUTF()
t reads in a string from the file.

void seek(long pos)
It sets the file-pointer(cursor) measured from the beginning of the file, at which the next read or write occurs.

long length()
It returns the length of the file.

void write(int b)
It writes the specified byte to the file from the current cursor position.

void writeFloat(float v)
It converts the float argument to an int using the floatTolntBits method in class Float, and then writes that int value to the file
as a four-byte quantity, high byte first.

void writeDouble(double v)
It converts the double argument to a long using the doublelolLongBits method in class Double, and then writes that long
value to the file as an eight-byte quantity, high byte first.

import java.io.RandomAccessFile;
import java.io.lOException;

public class RandomAccessFileExample {
static final String FILEPATH ="myFile. TXT";
public static void main(String[] args) {

try {
System.out.printin(new String(readFromFile(FILEPATH, 0, 18)));

writeToFile(FILEPATH, "l love my country and my people", 31);
} catch (IOException e) {
e.printStackTrace();
}
}
private static byte[] readFromFile(String filePath, int position, int size)

throws I0Exception {
RandomAccessFile file = new RandomAccessFile(filePath, "r");

file.seek(position) : The myFile.TXT contains text "This class is used for reading and writing to random access file.”
byte[] bytes = new byte[size];

file.read(bytes); after running the program it will contains

file.close();

return bytes; This class is used for reading | love my country and my peoplele.

}

private static void writeToFile(String filePath, String data, int position)
throws |OException {
RandomAccesskFile file = new RandomAccessFile(filePath, "rw");
file.seek(position);
file.write(data.getBytes());
file.close():

