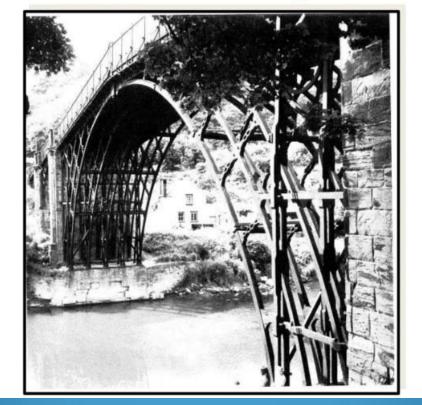
### **DESIGN OF STEEL STRUCTURES**

Presented By D.Chandra Mouli Assistant Professor Department of CE Dr Y S R ANUCET, ANU

## **DESIGN OF STEEL STRUCTURES**

# INTRODUCTION


## 1. What are steel structures

- In steel structures, structural steel is the main load carrying material to transfer the load within them and to transfer load to the ground
- Ex: I-Beam, Tee section, [ Channel section, Steel plate etc..,
- Steel concrete composite structures are also used in high-rise buildings but we are only going to study about steel structures in this paper

# 2.Common Steel structures

- 1. Roof truss in factories, cinema halls, railways etc.,
- 2. Crane girders, columns, beams
- 3. Plate girders, bridges
- 4. Transmission towers, water tank, chimney etc.,

# Old Arch Bridge





# **Industrial Building**



# Industrial Building



# **Truss Bridge**



## 2. Adv. & Disadv.

### **Advantages**

- High comp. & tensile strength per unit weight hence low construction weight, saves space
- Good aesthetic view
- Good quality and durability
- Very high speed of construction
- Reusability and scrap value env. Friendly
- Better solution to cover large span and tall structures

### **Disadvantages**

- Highcost Initial
- Corrosion
- Low fire resistance

## 3. Steel

### Steel making

- First iron is extracted from iron ores like haematite, limestone, magnetite in furnace
- Oxygen is passed through molten iron to remove carbon and impurities to make steel.
- Magnese is added to strengthen the steel
- Adding chrome, nickel, phosphorous can impart special properties in steel

- Semi finished products from the machine is hot rolled to different sections like bars, plates, angles, sections etc..,
- Adding carbon increases the tensile strength and hardness but lowers ductility and toughness
- In building we use structural steel which has low carbon of upto 0.1% to have ductility and yield.

#### Ductility

· Ability of material to change its shape without fracture

Mild steel – high ductility

High carbon steel - low ductility

#### Toughness & brittle fracture

- Ability of material to resist (absorb) impact load like earthquake load, machine load etc..,
- · Requires both strength and ductility
- At low temp. steel fails on impact loading due to reduction in ductility and toughness called brittle fracture

#### Temp

At high temp strength reduces

#### Corrosion

Steel corrodes in moist air, sea water and acid. Adopt Painting, metallic coating, plastic coating, using corrosion resistant steel to resist corrosion

### <u>Hardness</u>

- Resistance of the material to intentions and scratching
- Brinell harness, rockwell hardness number are used to measure hardness

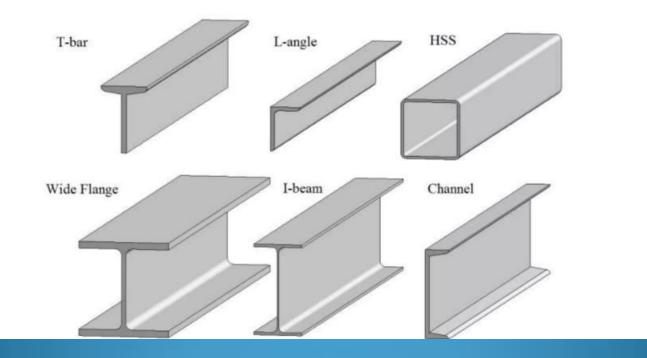
### Fatigue

- Damage of material to cyclic loading
- Occurs due to moving loads, vibration in bridge

### **Residual stress**

 Latent stress present in the steel sections due to uneven heating and cooling during steel making

### Stress concentration


 Under loading, stress is concentrated at places at abrubt change in geomentry like holes bolts

### Steel sections

- Steel is rolled to a required shape during fabrication.
- Commonly available
  - I section I
  - Tee section T
  - Channel sections –
  - Angle sections l
  - Steel bars , tubes, plates, sheets, strips

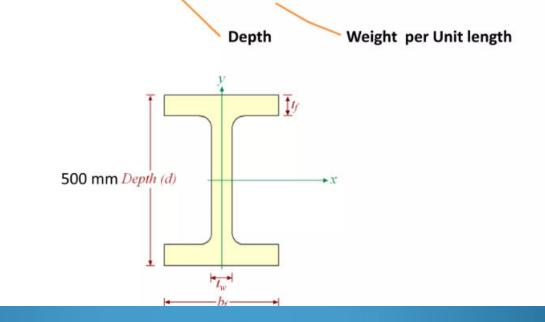
Refer structural engg handbook or steel table for

## **Common Steel members**



## Rolled steel I - section

ISJB – Indian standard junior beam


"

ISLB –

- Light beam
- ISMB "
- ISWB "
- ISHB "
- Medium beam
- " Wide flange beam
  - Heavy beam



Example = ISMB 500 & 0.852 kN/m



