ACHARYA NAGARJUNA UNIVERSITY

4-year B.Tech. Degree Course
(Semester System)

COMPUTER SCIENCE & ENGINEERING

SYLLABUS

W.E.F. 2011 – 2012
(from the batch admitted in the year 2011)
ACHARYA NAGARJUNA UNIVERSITY: NAGARJUNA NAGAR

REVISED REGULATIONS FOR

FOUR - YEAR B.TECH. DEGREE COURSE
(CREDIT BASED SYSTEM)
(Effective for the batch of students admitted into first year B.Tech. from the academic year 2011-2012).

1.0. MINIMUM QUALIFICATIONS FOR ADMISSION:
A candidate seeking admission into First Year of B.Tech. Degree Course should have passed either Intermediate examination conducted by the Board of Intermediate Education, Andhra Pradesh with Mathematics, Physics, and Chemistry as optional subjects (or any equivalent examination recognized by the Acharya Nagarjuna University) or Diploma in Engineering in the relevant branch conducted by the State Board of Technical Education & Training of Andhra Pradesh (or equivalent Diploma recognized by Acharya Nagarjuna University).

The selection is based on the rank secured by the candidate at the EAMCET / ECET (FDH) examination conducted by A.P. State Council of Higher Education.

The candidate shall also satisfy any other eligibility requirements stipulated by the University and / or the Government of Andhra Pradesh from time to time.

2.0. BRANCHES OF STUDY:
2.1. The B.Tech. Course is offered in the following branches of study at one or more of the affiliated colleges:

1 Biotechnology
2 Chemical Engineering
3 Civil Engineering
4 Computer Science & Engineering
5 Electrical & Electronics Engineering
6 Electronics & Communication Engineering
7 Electronics & Instrumentation Engineering
8 Information Technology
9 Mechanical Engineering

2.2 The first year of study is common to all branches of Engineering except for Chemical Engineering and Biotechnology.
2.3 In addition to the core electives, an open elective (non departmental elective) is to be offered in the first semester of fourth year by all branches of B.Tech. courses.

3.0 DURATION OF THE COURSE AND MEDIUM OF INSTRUCTION:

3.1 The duration of the course is four academic years consisting of two semesters in each academic year where as annual pattern is followed for first year. The medium of instruction and examination is English.

3.2 The duration of the course for the students (Diploma Holders) admitted under lateral entry into II B.Tech. is three academic years consisting of two semesters in each academic year. The medium of instruction and examination is English.

4.0 MINIMUM INSTRUCTION DAYS:

The first year shall consist of a minimum number of 180 instruction days and each semester of 2nd, 3rd and 4th years shall consist of 90 days of instruction excluding the days allotted for tests, examinations and preparation holidays.

5.0 EVALUATION:

The performance of the students in each year/ semester shall be evaluated subject wise

5.1 The distribution of marks between sessional work (based on internal assessment) and University Examination will be as follows:

<table>
<thead>
<tr>
<th>Nature of the subject</th>
<th>Sessional Marks</th>
<th>University Exam. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory subjects</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Design and / or Drawing</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Practicals</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>MiniProject/Seminar</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>Project work</td>
<td>50</td>
<td>150 (Viva voce)</td>
</tr>
</tbody>
</table>

5.2 In the First Year, there shall be three Mid Term Examinations and three Assignment Tests in theory subjects, conducted at approximate equal intervals in the academic year. Assignment questions shall be given at least one week in advance and the students shall answer the question(s) specified by the concerned teacher just before the commencement of the Assignment Test. A maximum of 18 Sessional marks (75% approx) shall be awarded based on the best two performances out of the three Mid Term Exams and a maximum of 7 (25% approx) marks for the best two Assignment Tests out of the three Assignment Tests conducted.

For Drawing subject (Engineering Graphics), 7 marks shall be awarded based on day-to-day class work and the remaining 18 marks based on the best two
performances in the three Mid Term Exams. No separate Assignment Tests will be held for this subject.

The remaining 5 marks out of the 30 marks earmarked for the internal sessional marks are allotted for attendance in the respective theory and drawing subjects in a graded manner as indicated in clause 7.2 from I year to IV year.

In each of the Semesters of 2nd, 3rd and 4th years, there shall be two Mid Term examinations and two Assignment Tests in every theory subject. The Sessional marks for the midterm examinations shall be awarded giving a weightage of 14 marks out of 18 marks (75% approx) to that midterm examination in which the student scores more marks and the remaining 4 marks (25% approx.) for other midterm examination in which the student scores less marks. Similarly a weightage of 5 marks (75% approx) out of 7 marks earmarked for assignment tests shall be given for the assignment in which the student scores more marks and remaining 2 marks (25% approx) shall be given for the assignment test in which the student scores less marks.

For Drawing subjects, there shall be only two Mid Term examinations in each semester with no Assignment Tests. In case of such subjects a maximum of seven marks shall be given for day-to-day class work and the remaining maximum 18 marks shall be awarded to the Mid Term examinations taking into account the performance of both the Mid Term examinations giving weightage of 14 marks for the Mid Term Examination in which the student scores more marks and the remaining 4 marks for the other midterm examination. A weightage of 5 marks will be given in the total sessional marks of 30 for attendance in all theory and drawing subjects as indicated in clause 7.2.

5.3. The evaluation for Laboratory class work consists of weightage of 20 marks for day to day laboratory work including record work and 10 marks for internal laboratory examination including Viva-voce examination.

In the case of Project work, the sessional marks shall be awarded based on the weekly progress and based on the performance in a minimum of two Seminars and the Project Report submitted at the end of the semester. The allotment of sessional marks for Seminars and for day-to-day class work shall be 20 and 30.

NOTE: A student who is absent for any Assignment / Mid Term Exam, for any reason whatsoever, shall be deemed to have scored zero marks in that Test / Exam and no make-up test / Exam shall be conducted.

5.4. A student who could not secure a minimum of 50% aggregate sessional marks is not eligible to appear for the year-end / semester-end University examination and shall have to repeat that year/ semester.

6.0. LABORATORY / PRACTICAL CLASSES:

In any year/semester, a minimum of 90 percent experiments / exercises specified in the syllabi for laboratory course shall be conducted by the students, who shall complete these in all respects and get the Record certified by the concerned Head of the Department for the student to be eligible to face the University Examination in that Practical subject.
7.0. **ATTENDANCE REGULATIONS:**

7.1 Regular course of study means a minimum average attendance of 75% in all the subjects computed by totaling the number of hours / periods of lectures, design and / or drawing, practicals and project work as the case may be, held in every subject as the denominator and the total number of hours / periods actually attended by the student in all the subjects, as the numerator.

7.2 A Weightage in sessional marks upto a maximum of 5 marks out of 30 marks in each theory subject shall be given for those students who put in a minimum of 75% attendance in the respective theory in a graded manner as indicated below:

- Attendance of 75% and above but less than 80% - 1 mark
- Attendance of 80% and above but less than 85% - 2 marks
- Attendance of 85% and above but less than 90% - 3 marks
- Attendance of 90% and above - 5 marks

7.3 Condonation of shortage in attendance may be recommended on genuine medical grounds, up to a maximum of 10% provided the student puts in at least 65% attendance as calculated in clause 7.1 above and provided the principal is satisfied with the genuineness of the reasons and the conduct of the student.

7.4 A student who could not satisfy the minimum attendance requirements, as given above, in any year / semester, is not eligible to appear for the year end or semester end examinations and shall have to repeat that year/semester.

8.0 **DETENTION:**

A student, who fails to satisfy either the minimum attendance requirements as stipulated in Clause-7, or the requirement of minimum aggregate sessional marks as stipulated in Clause 5, shall be detained. Such a student shall have to repeat the same year / semester as the case may be subsequently and satisfy the above requirements afresh to become eligible to appear for the year-end / semester-end University examination.

9.0. **UNIVERSITY EXAMINATION:**

9.1. For each theory, design and/or drawing subject, there shall be a comprehensive University Examination of three hours duration at the end of First year / each Semester of 2nd, 3rd and 4th years, except where stated otherwise in the detailed Scheme of Instruction.

Question paper setting shall be entrusted to external examiners from the panels approved by the respective Boards of Studies.

9.2. For each Practical subject, the University examination shall be conducted by one internal and one external examiner appointed by the Principal of the concerned college and the University respectively, the duration being that approved in the detailed Schemes of Instruction & Examination.
9.3 Viva-voce Examination in Project Work shall be conducted by one internal examiner and one external examiner to be appointed by the University.

10.0 AWARD OF CREDITS

Credits are awarded for each Theory/Practical Subjects. Each theory subject is awarded 4 credits and each practical subject is awarded 2 credits. Project work is awarded 10 credits. However for some important theory subjects more than 4 credits may be awarded by individual boards. The total number of credits for all the four years put together should be in the range of 218-224 for any branch.

10.1 AWARD OF GRADES

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Range of Marks</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≥85%</td>
<td>S</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>75%-84%</td>
<td>A</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>65%-74%</td>
<td>B</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>55%-64%</td>
<td>C</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>45%-54%</td>
<td>D</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>40%-44%</td>
<td>E</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>≤39%</td>
<td>F(Fail)</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>The grade ‘W’ represents withdrawal/absent (subsequently changed into pass or E to S or F grade in the same semester)</td>
<td>W</td>
<td>0.0</td>
</tr>
</tbody>
</table>

10.2 A Student securing ‘F’ grade in any subject there by securing 0 grade points has to reappear and secure at least ‘E’ grade at the subsequent examinations in that subject.

10.3 After 1st year/each semester, Grade sheet will be issued which will contain the following details:
- The list of subjects for the 1st year/each semester and corresponding credits and Grades obtained
- The Grade Point Average(GPA) for the 1st year/ each semester and
- The Cumulative Grade Point Average(CGPA) of all subjects put together up to that semester from first year onwards

GPA is calculated based on the following formula:

\[
\text{GPA} = \frac{\text{Sum of [No.Credits X Grade Points]}}{\text{Sum of Credits}}
\]

CGPA will be calculated in a similar manner, considering all the subjects enrolled from first year onwards.

11.0 CONDITIONS FOR PROMOTION
11.1. A student shall be eligible for promotion to II B.Tech. Course if he / she satisfies the
minimum requirements of attendance and sessional marks as stipulated in Clauses 5
and 7, irrespective of the number of backlog subjects in I B.Tech.

11.2. A student shall be eligible for promotion to III B.Tech. Course if he / she secures a
minimum of 70% of the total number of credits from one regular and one
supplementary examinations of I B.Tech., (including practical subject) in addition
to satisfying the minimum requirements of attendance and sessional marks stipulated
in Clauses 5 and 7 in II/IV B.Tech.

11.3. A student shall be eligible for promotion to IV B.Tech. course if he/she secures a
minimum of 70% of the total number of credits from two regular & two
supplementary examinations of I B.Tech. and two regular & one supplementary
examinations of II B.Tech. 1st semester and one regular & one supplementary
examinations of II B.Tech. 2nd semester (including practical subjects) in addition to
satisfying the minimum requirements of attendance and sessional marks stipulated in
Clauses 5 and 7 in III B.Tech.

11.4. A student (Diploma Holder) admitted under lateral entry into II B.Tech. shall be
eligible for promotion to IV B.Tech. course if he/she secures a minimum of 70%
the total number of credits from two regular & one supplementary
examinations of II B.Tech. 1st semester and one regular & one supplementary
examinations of II B.Tech. 2nd semester (including practical subjects) in addition to
satisfying the minimum requirements of attendance and sessional marks stipulated in
Clauses 5 and 7 in III B.Tech.

12.0 ELIGIBILITY FOR AWARD OF B.TECH. DEGREE

The B.Tech. Degree shall be conferred on a candidate who has satisfied the
following requirements.

12.1 The candidate must have satisfied the conditions for pass in all the subjects of all the
years as stipulated in clause 10.

12.2. Maximum Time Limit for completion of B.Tech Degree

A Student, who fails to fulfill all the academic requirements for the award of the
degree within eight academic years from the year of admission, shell forfeit
his/her seat in B.Tech. course.

12.3 A student (Diploma Holder) admitted under lateral entry into II B.Tech., who
fails to fulfill all the academic requirements for the award of the degree within
six academic years from the year of admission, shell forfeit his/her seat in
B.Tech. course.
13.0 AWARD OF CLASS

A candidate who becomes eligible for the award of B.Tech. Degree as stipulated in Clause 12 shall be placed in one of the following Classes.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Class</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Class With Distinction</td>
<td>8.0 or more</td>
</tr>
<tr>
<td>2</td>
<td>First Class</td>
<td>6.5 or more but less than 8.0</td>
</tr>
<tr>
<td>3</td>
<td>Second Class</td>
<td>5.0 or more but less than 6.5</td>
</tr>
<tr>
<td>4</td>
<td>Pass Class</td>
<td>4.5 or more but less than 5.0</td>
</tr>
</tbody>
</table>

14.0. IMPROVEMENT OF CLASS

14.1. A candidate, after becoming eligible for the award of the Degree, may reappear for the University Examination in any of the theory subjects as and when conducted, for the purpose of improving the aggregate and the class. But this reappearance shall be within a period of two academic years after becoming eligible for the award of the Degree.

However, this facility shall not be availed of by a candidate who has taken the Original Degree Certificate. Candidates shall not be permitted to reappear either for Sessional Examination or for University Examinations in Practical subjects (including Project Viva-voce) for the purpose of improvement.

14.2. A single Grade sheet shall be issued to the candidate after incorporating the Credits and Grades secured in subsequent improvements.

14.3. A consolidated Grade Sheet shall be issued to the candidate indicating the CGPA of all the four years put together along with the Provisional Certificate.

15. AWARD OF RANK

The rank shall be awarded based on the following:

15.1. Ranks shall be awarded in each branch of study for the top ten percent of the students appearing for the Regular University Examinations or the top ten students whichever is lower.

15.2. Only such candidates who pass the Final year examination at the end of the fourth academic year after admission as regular final year students along with the others in their batch and become eligible for the award of the Degree shall be eligible for the award of rank. The University Rank will be awarded only to those candidates who complete their degree within four academic years.

15.3. For the purpose of awarding rank in each branch, the CGPA calculated based on the Grades secured at the first attempt only shall be considered.

15.4. Award of prizes, scholarships, or any other Honors shall be based on the rank secured by a candidate, consistent with the desire of the Donor, wherever applicable.
16.0 SUPPLEMENTARY EXAMINATIONS

In addition to the Regular University Examinations held at the end of 1st year / each semester, Supplementary University Examinations will be conducted during the academic year. Such of the candidates taking the Regular / Supplementary University examinations as Supplementary candidates may have to take more than one University Examination per day.

17.0 TRANSITORY REGULATIONS

17.1. Candidates who studied the four-year B.Tech. Degree Course under Revised Regulations (RR)/ Credit based Regulations(CR) but who got detained in any year for want of attendance / minimum aggregate sessional marks may join the appropriate year / semester in the Semester system applicable for the batch and be governed by the Regulations of that batch from then on.

17.2. University Examinations according to RR / CR shall be conducted in subjects of each year five times after the conduct of the last set of regular examinations under those Regulations.

17.3. Candidates who have gone through the entire course of four academic years and have satisfied the attendance and minimum aggregate sessional marks in 1st year/each semester under RR/CR, but who are yet to pass some subjects even after the five chances stated in Clause 17.2, shall appear for the equivalent subjects in the Semester system, specified by the University / Board of Studies concerned.

18.0 AMENDMENTS TO REGULATIONS

The University may, from time to time, revise, amend, or change the Regulations, Schemes of Examinations, and / or Syllabi.

* * *
ACHARYA NAGARJUNA UNIVERSITY

SCHEME OF INSTRUCTION AND EXAMINATION

w.e.f. 2011-2012 (semester System)

I/IV B.Tech. (All Branches) ANNUAL PATTERN (for I B.Tech. only)

(Except Chemical Engg. And Bio-Technology)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Code No.</th>
<th>Subject Name</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examination</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Periods per week</td>
<td>Maximum Marks</td>
<td>Total Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture + Tutorial</td>
<td>Drawing / Practical</td>
<td>Sessional</td>
</tr>
<tr>
<td>1.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 101</td>
<td>Mathematics-I</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 102</td>
<td>Mathematics-II</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 103</td>
<td>Engineering Physics</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>4.</td>
<td>CE/CSE/ECE/EEE/EI/IT/ME – 104</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 105</td>
<td>Professional Communication Skills</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>6.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 106</td>
<td>C Programming and Numerical Methods</td>
<td>3</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>7.</td>
<td>CE/CSE/ECE/EEE/EI/IT/ME – 107</td>
<td>Engineering Mechanics</td>
<td>3+1</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 108</td>
<td>Engineering Graphics*</td>
<td>2+4</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>9.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 151</td>
<td>Physics Lab</td>
<td>--</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>10.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 152</td>
<td>Chemistry Lab</td>
<td>--</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>11.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 153</td>
<td>Workshop Practice</td>
<td>--</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>12.</td>
<td>BT/CE/ChE/CSE/EC/EEE/EI/IT/ME – 154</td>
<td>Fundamentals of H/W & S/W and C-Programming Lab</td>
<td>--</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

TOTAL

| | 23+5 | 12 | 360 | 840 | 1200 | 40 |

* Two different question papers will be set for the University Examination. One question paper for CE,ME,EEE,Ch,E and BT branches and the University Examination will be conducted in Morning Session. The second question paper will be set for ECE,EI,CSE & IT branches and the University exam will be conducted in Evening Session.
ACHARYA NAGARJUNA UNIVERSITY
SCHEME OF INSTRUCTION AND EXAMINATION
w.e.f. 2011-2012 (semester System)
II / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE/IT211</td>
<td>Mathematics III</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT212</td>
<td>Discrete Mathematical Structures</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT213</td>
<td>Basic Electrical & Electronics Engineering</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT214</td>
<td>Digital Logic Design</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT215</td>
<td>Operating Systems</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT216</td>
<td>Data Structures using C</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT251</td>
<td>Data Structures Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT252</td>
<td>BEE Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT253</td>
<td>Communication Skills</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 27 9 30

II / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE/IT221</td>
<td>Probability & Statistics</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT222</td>
<td>Environmental Science</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT223</td>
<td>Computer Organization</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT224</td>
<td>DBMS</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT225</td>
<td>Object Oriented Programming</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT226</td>
<td>UNIX Programming</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT261</td>
<td>DBMS Lab</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT262</td>
<td>EDP Lab</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT263</td>
<td>OS Lab (UNIX based)</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Total 27 9 30
III / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 311</td>
<td>Microprocessors & Microcontrollers</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT312</td>
<td>Computer Networks</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT313</td>
<td>Automata Theory & Formal Languages</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT314</td>
<td>Advanced Java Programming</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT 315</td>
<td>Design Analysis of Algorithms</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT316</td>
<td>Software Engineering</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT351</td>
<td>Advanced Java Programming Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE352</td>
<td>Microprocessors Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT353</td>
<td>Computer Networks Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>27</td>
<td>9</td>
<td>30</td>
</tr>
</tbody>
</table>

III / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE/IT321</td>
<td>Network Security</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE322</td>
<td>Compiler Design</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT323</td>
<td>OOAD</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT324</td>
<td>Artificial Intelligence</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT325</td>
<td>Elective - I</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT326</td>
<td>Computer Vision</td>
<td>4+1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT361</td>
<td>Mini Project</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE362</td>
<td>Compiler Design Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT363</td>
<td>Computer Vision Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>27</td>
<td>9</td>
<td>30</td>
</tr>
</tbody>
</table>

ELECTIVE-I:
- CSE 325(A) – Gaming Engineering
- CSE 325(B) – Embedded & Real Time Systems
- CSE 325(C) – Multimedia Systems
- CSE 325(D) – Software Testing Methodologies
IV / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – I)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE/IT 411</td>
<td>Mobile Computing</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE412</td>
<td>Advanced Computer Architecture</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT413</td>
<td>Distributed Systems</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE414</td>
<td>Web Technologies</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT415</td>
<td>Elective-II(Open)</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT416</td>
<td>Professional Ethics & human Values</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT451</td>
<td>Mobile Computing Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE452</td>
<td>Web Technologies Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT453</td>
<td>Soft Skills Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total
27 9 30

IV / IV B.Tech., (COMPUTER SCIENCE & ENGINEERING)
(SEMESTER – II)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE/IT421</td>
<td>Industrial Engineering & Management</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT422</td>
<td>Machine Learning</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT423</td>
<td>Data Engineering</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT424</td>
<td>Elective -II</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT425</td>
<td>Elective - III</td>
<td>4+1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CSE/IT461</td>
<td>Data Engineering Lab</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CSE/IT462</td>
<td>Project</td>
<td>-</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Total
23 6 30

Elective – II
- CSE 424(A) Parallel Algorithms
- CSE424(B) Natural Language Processing
- CSE424(C) Cyber Crimes & Laws
- CSE424(D) Multicore Technologies

Elective III
- CSE 425 (A) Bio Informatics
- CSE 425 (B) Enterprise Programming
- CSE 425 (C) Cloud Computing
- CSE 425 (D) Image & Speech Processing
Unit-I
Differential Calculus:
Rolle’s Theorem (without proof), Lagrange’s Mean value theorem (without proof),
Taylor’s theorem (without proof), Maclaurin’s series, Maxima and Minima of functions
of two variables, Lagrange’s method of undetermined multipliers.

Unit-II
Multiple Integrals:
Double integrals, Change of order of integration, Double integrals in polar coordinates, Area enclosed by plane curves, Triple integrals, Volume of solids, Change of variables.

Ordinary differential equations (first order): Introduction, Linear and Bernoulli’s equations, Exact equations, equations reducible to exact equations, Orthogonal trajectories, Newton’s law of cooling, Heat flow, Rate of Decay of Radio-Active Materials

Unit-III
Ordinary differential equations (higher order):
Linear Differential equations: Definition, Theorem, Operator D, Rules for finding the complementary function, Inverse operator, Rules for finding the particular integral, Working procedure to solve the equation, Linear dependence of solutions, Method of variation of parameters, Equations reducible to linear equations, Cauchy’s homogeneous linear equation, Legendre’s linear equation, Simultaneous linear equations with constant coefficients.

Unit-IV
Fourier Series: Introduction and Euler’s formulae, Conditions for a Fourier expansion, Functions having points of discontinuity, Change of interval, Even and Odd functions, Half range series Typical wave forms and Parseval’s formulae, Complex form of the Fourier series Practical harmonic analysis.

[2]. Engineering Mathematics by Babu Ram
Unit-I
Matrices:
Rank of a matrix, vectors, Consistency of linear system of equations, Linear transformations, Characteristic equations, Properties of eigen values, Cayley-Hamilton theorem (without proof), Reduction to diagonal form reduction of Quadratic forms to canonical form, Nature of a quadratic form, Complex matrices.

Unit-II
Beta Gamma functions, error function.
Statistics: Method of least squares, Correlation, co-efficient of correlation (direct method only), lines of regression.
Vector Calculus:
Scalar and vector point functions, Del applied to scalar point functions. Gradient

Unit-III
Vector Calculus:
Del applied to vector point functions, Physical interpretation of divergence, Del applied twice to point functions, Del applied to products of point functions, Integration of vectors, Line integral, Surfaces, Green’s theorem in the plane (without proof), Stoke’s theorem (without proof), Volume integral, Gauss divergence Theorem (without proof), Cylindrical Coordinates, Spherical polar coordinates.

Unit-IV
Laplace Transforms : Introduction, Transforms of elementary functions, Properties of Laplace Transforms, existence conditions, Transforms of derivatives, Integrals, multiplication by t^n, division by t, Evaluation of integrals by Laplace Transforms, Inverse transforms, convolution theorem, Application to Differential equations with constant coefficients, transforms of unit step function, unit impulse function, periodic function.

Khanna publishers, 40th edition.

Reference Books:
[1] Engineering Mathematics by Babu Ram
UNIT-I

Ultrasonics 20 Periods
Production of Ultrasonics by Piezo electric oscillator method, Detection by Acoustic grating method, Applications - Pulse echo technique, ultrasonic imaging and some general applications.

Applied Optics
Interference: Stokes principle (Phase change on reflection), Interference in thin films due to reflected light (Cosine law), (uses of air films in wedge method and Newton’s rings experiments - qualitative treatments only) Michelson’s interferometer: Principle, construction working and applications (Determination of wavelength of monochromatic source & for resolution of two closely lying wavelengths).
Lasers: Laser characteristics, Spontaneous and Stimulated emissions, Basic requirements of a laser, Population inversion – Solid state laser (Ruby laser), Gas (He-Ne) laser, Semiconductor (GaAs) laser, Applications of lasers.
Holography: Principle, recording, reproduction and applications.
Fiber optics: Structure of optical fiber, Types of optical fibers, Numerical aperture, Fiber optics in communications and advantages.

UNIT-II 15 Periods

Electromagnetism
Gauss’s law in electricity (statement & proof), Coulomb’s law from Gauss law, Circulating charges and Cyclotron principle & working, Hall effect and its uses, Gauss law for magnetism, Faraday’s law of electromagnetic induction, Lenz’s law, induced electric fields, Inductance, energy stored in a magnetic field, Displacement current, Maxwell’s equations (qualitative treatment), electromagnetic wave equation and Velocity, Electromagnetic oscillations (qualitative treatment),

Electron Theory of Solids
Failure of classical free electron theory, quantum free electron theory, Fermi- dirac (analytical) distribution function and its temperature dependence, Fermi energy.

UNIT-III 20 Periods

Principles of Quantum Mechanics
Dual nature of light, Matter waves & properties, de Broglie’s concept of matter waves, Davisson and Germer experiment, Heisenberg’s uncertainty principle and applications (non-existence of electron in nucleus, finite width of spectral lines). One dimensional time independent Schrodinger’s wave equation, Physical significance of the wave function, Particle in a box (one dimensional).

Band theory of Solids
Bloch theorem, Kronig-Penny model (Qualitative treatment), Origin of energy band formation in solids, effective mass of electron, concept of hole.

Dielectric and Magnetic Materials
Electric dipole moment, polarization, dielectric constant, polarizability, types of polarizations, internal fields (qualitative), Clausius-Mossotti equation, Frequency dependence of polarization, Ferroelectrics and their applications.
Origin of magnetic moment of an atom, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic moment, Hysteresis curve, soft and hard magnetic materials, Ferrites and their applications.

UNIT –IV

Advanced Materials of Physics

| 15 Periods |

Optoelectronic devices: Qualitative treatments of Photo diode, LED and LCD; Solar cell and its characteristics. Electro-optic and Magneto-optic effects (Kerr and Faraday effects).

Superconductivity: First experiment, critical parameters (T_c, H_c, I_c), Meissner effect, types of superconductors, BCS Theory (in brief) and Applications of superconductors.

NanoTechnology: Introduction to nano materials, nano scale, surface to volume ratio, fabrication of nanomaterials, sol-gel and chemical vapour deposition methods, Carbon nano tubes-preparation and properties (thermal, electrical and mechanical - in brief), some applications of nanomaterials.

TEXT BOOKS

REFERENCE BOOKS

1. Concepts of Modern Physics – Aurther Beiser (TMG)
UNIT-I
(18 periods)

WATER TECHNOLOGY: Various impurities of Water, WHO guidelines, Hardness units and determination by EDTA method (simple problems), water treatment for drinking purpose-sedimentation, coagulation, filtration (slow sand filter), various methods of chlorination, breakpoint chlorination. Water treatment for industrial purpose: Boiler troubles, scales, sludges, caustic Embrittlement, boiler corrosion, priming and foaming- causes and prevention, Internal conditioning -Phosphate, Calgon and carbonate treatment, External conditioning-Lime Soda process (simple problems), softening by ion exchange process, Desalination of brackish water by electro dialysis and reverse osmosis.

GREEN CHEMISTRY: Introduction, Principles and applications.

UNIT-II
(18 periods)

POLYMERS:
Monomer functionality, degree of polymerization, Tacticity, classification of polymerization- addition, condensation and co-polymerization, mechanism of free radical polymerization.
Plastics- Thermoplastic and thermosetting resins, preparation, properties and uses of Bakelite, polyesters, Teflon and PVC. Compounding of plastics.
Conducting polymers: Polyacetylene, mechanism of conduction, examples and applications.
Rubber- Processing of latex, Drawbacks of natural rubber- Vulcanization, Synthetic rubbers- Buna-S and Buna-N, polyurethane rubber and silicone rubber.

UNIT-III
(18 periods)

Phase Rule: Statement and explanation of the terms involved, one component water system, condensed phase rule- construction of phase diagram by thermal analysis, simple eutectic system (Pb-Ag system only).
Electrochemical Energy Systems: Types of electrochemical energy systems, electrochemistry of primary batteries (Lachlanche or dry cell), Secondary cells (Lead Acid cell, Ni-Cd cell), Lithium batteries (Li-MnO$_2$ Lithium organic electrolyte) and their advantages.
Corrosion and its control: Introduction, electrochemical theory of corrosion,dry corrosion, corrosion due to differential aeration, Types of corrosion-galvanic

UNIT-IV

Fuels: Classification of fuels, calorific value-units and determination (Bomb calorimeter). Coal- Ranking and analysis, carbonization of coal (using Beehive oven) Petroleum based: Fractional distillation, cracking, reforming, composition and uses of petrol, diesel, CNG and LPG.

Composites: Introduction, Constituents of Composites, Types –Fibre reinforced, Particulate and layered composites and their applications.

Lubricants: Classification –liquid lubricants-Viscosity index, Flash point, Fire point, Cloud point, Pour point, oiliness. Solid lubricants –Graphite and Molybdenum sulphide, Additives. **Liquid crystals:** Structure of liquid crystal forming compounds, Classification and applications.

Text Book recommended:

Reference Books :

UNIT-1: SPEECH BUILDING

This arena refreshes the students in the usage of grammar and basics of communication in English. It also helps them start building up their vocabulary.

1. Speaking about oneself.
2. Sentence and its types
3. Positive, Negative and Interrogative Sentences, Speaking in formal and informal contexts, Asking for opinion, Asking for information, Requesting and Seeking permission; Emphasising a point
4. A list of 100 Basic Words
5. One word substitutes

UNIT- II: BASIC LANGUAGE SKILLS

The emphasis is on Grammar and development of written and oral communication skills among students and equip them with the skills to overcome the cut throat competition in formal and informal situations in the present world.

1. Parts of speech
2. Tenses
3. Letter writing (Personal and Business)
4. Situational Dialogues
5. A list of 100 Basic Words

III UNIT: ADVANCED LANGUAGE SKILLS

To develop two specific skills i.e. speaking and writing, using correct and good vocabulary to improve the communicative competence of learners in their discipline with glamour.
IV UNIT: PROFESSIONAL COMMUNICATION SKILLS

Professional communication skills aim at making students familiar with various aspects of corporate world and the importance of verbal communication. It also provides intensive instruction in the practice of professional writing.

1. Essay writing
2. Corporate Information
3. Idioms
4. E-mail etiquette

Prescribed Textbook:

Reference Books:
- Effective Technical Communication, M.Ashraf Rizvi, Tata Mc Graw Hill.
- Communication Skills for Professionals, Nira Konar, PHI Publication.
- Competitive English for Professional Courses, J.K.Gangal, S.Chand Publication.
- Advanced Technical Communication, Kavita Tyagi, Padma Misra, PHI Publication.
- Word Power Made Handy, Dr. Shalini Verma, S.Chand Publication.
UNIT-1 (16 Periods)

C-Basics: C-character set, Data types, Constants, Expressions, Structure of C program, Operators and their precedence & associativity, Basic input and output statements, Control Structures, Simple programs in C using all the operators and control structures.

UNIT-II (16 Periods)
Functions: Concept of a function, passing the parameters, automatic variables, scope and extent of variables, storage classes, recursion, iteration vs recursion, types of recursion, Simple recursive and non recursive programs, Towers of Hanoi problem.
Arrays: Single and multidimensional Arrays, Character array as a string, string functions, Programs using arrays and string manipulation.

UNIT-III (16 Periods)
Pointers: Pointers declarations, Pointer expressions, Pointer parameters to functions. Pointers, Pointers and array, Pointer arithmetic.
Structures: Declaring and using structures, operations on structures, structures and arrays, user defined data types., pointers to structures.
Files: Introduction, file structure, file handling functions, file types, file error handling, Programs using file functions.

UNIT-IV (16 Periods)
General Quadrature formula, Simpsons rule, Euler’s method, general method for deriving differentiation formula, differentiation of Lagrange’s polynomial, differentiation of Newton polynomial, Taylors Series, Ranga Kutta Method.

Text Books:
1. C Programming and Numerical Methods - Ajay Mithal - Pearson
2. Computer Oriented Numerical Methods -V.Raja Raman - PHI

References :
1. Programming with C-Gottfried-Schaums Outline Series-TMH
2. C Programming- Behrouz A forouzan – CENGAGE Learning
3. Computer Programming – Kanthane –Pearson Education
4. Elementary Numerical Methods - C.D. Conte
5. Introduction to Numerical Methods - S.S. Sastry
UNIT – I
Concurrent Forces In A Plane
Principles of statics ; composition and resolution of forces ; equilibrium of concurrent forces in a plane ; method of projections ; Method of moments.

Parallel Forces In A Plane
Couple ; general case of parallel forces in a plane ; center of parallel forces and centre of gravity ; Centroids of composite plane figures and curves; Centre of gravity of three-dimensional bodies.

UNIT – II
General Case Of Forces In A Plane
Composition of forces in a plane ; Equilibrium of forces in a plane ; Plane trusses – method of joints, Method of sections

Friction
Static and kinetic friction, Laws of friction; Applications of static friction.

Principle Of Virtual Work
Equilibrium of Ideal systems

UNIT – III
Rectilinear Translation
Kinematics of rectilinear motion ; Principles of dynamics ; Differential equation of rectilinear motion ; Motion of a particle acted upon by a constant force ; D’Alemberts principle ; Momentum and impulse ; Work and energy ; Ideal systems – conservation of energy ; direct central impact

Moments Of Inertia Of Plane Figures
Moment of inertia of a plane figure with respect to an axis in its plane ; Moment of Inertia with respect to an axis perpendicular to the plane of the figure ; Parallel axis theorem.

UNIT – IV
Curvilinear Translation
Kinematics of curvilinear motion ; Differential equations of curvilinear motion ; D’Alembert’s principle in curvilinear motion ; Work and Energy.

Moments Of Inertia Of Material Bodies
Moment of inertia of a rigid body ; Moment of inertia of a lamina ; Moments of inertia of three-dimensional bodies.

Rotation Of A Rigid Body About A Fixed Axis
Kinematics of rotation; Equation of motion for a rigid body rotating about a fixed axis; Work and energy

NOTE
Two questions of 14 marks each will be given from each unit out of which one is to be answered. Fourteen questions of one mark each will be given from entire syllabus which is a compulsory question.

TEXT BOOK

REFERENCE BOOKS
1. Engineering mechanics by J. L. Meriam and L. Kraige, John Wiley & Sons
3. Engineering Mechanics by Hibbler and Gupta, Pearson Education
NOTE: 1) Unit VI not to be included in the university theory examination. This unit is only for internal assessment.
2) University Examination Question paper consists of FIVE questions, TWO questions from each unit with internal choice.
(To be taught & examined in First angle projection)

UNIT I

Representative fraction.

CURVES: Curves used in Engineering practice - conic sections - general construction and special methods for ellipse, parabola and hyperbola. Cycloidal curves - cycloid, epicycloid and hypocycloid; involute of circle and Archemedian spiral.

UNIT II

METHOD OF PROJECTIONS: Principles of projection - First angle and third angle projection of points. Projection of straight lines. Traces of lines.

UNIT III

PROJECTIONS OF SOLIDS: Projections of Cubes, Prisms, Pyramids, Cylinders and Cones with varying positions.
SECTIONS OF SOLIDS: Sections of Cubes, Prisms, Pyramids, cylinders and Cones. true shapes of sections. (Limited to the Section Planes perpendicular to one of the Principal Planes).

UNIT IV

DEVELOPMENT OF SURFACES: Lateral development of cut sections of Cubes, Prisms, Pyramids, Cylinders and Cones.

ISOMETRIC PROJECTIONS: Isometric Projection and conversion of Orthographic Projections into isometric views. (Treatment is limited to simple objects only).

UNIT V

ORTHOGRAPHIC PROJECTIONS: Conversion of pictorial views into Orthographic views. (Treatment is limited to simple castings).

UNIT VI

(Demonstration only)

COMPUTER AIDED DRAFTING (Using any standard package): Setting up a drawing: starting, main menu (New, Open, Save, Save As etc.), Opening screen, error correction on screen, units, co-ordinate system, limits, grid, snap, ortho.

Tool bars: Draw tool bar, object snap tool bar, modify tool bar, dimension tool Bar

PRACTICE OF 2D DRAWINGS: Exercises of Orthographic views for simple solids using all commands in various tool bars.

TEXT BOOK:

• AutoCAD 14 for Engineering Drawing Made Easy(Features AutoCAD 200) by P.Nageswara Rao

REFERENCE BOOK:
• Engineering Drawing by Prof.K.L.Narayana & Prof. R.K.Kannaiah.
• Engineering Graphics with AutoCAD 2002 by James D. Bethune
Any 15 experiments from the following list

LIST OF EXPERIMENTS

1. Compound pendulum – Determination of acceleration due to gravity \((g)\)
2. Interference fringes - measurement of thickness of a foil / diameter of Wire using wedge method.
3. Sensitive galvanometer - Determination of figure of merit
4. Newton’s rings – Measurement of radius of curvature of plano convex lens
5. Lissajous’ figures – Calibration of an audio oscillator
6. Photo cell – I-V Characteristic curves and determination of stopping potential
7. Diffraction grating – Measurement of wavelengths
8. Torsional pendulum - Determination of rigidity modulus of the wire material.
9. Carey- Foster’s bridge: Determination of specific resistance/Temperature coefficient of resistance.
10. Photo voltaic cell - Determination of fill-factor
11. Variation of magnetic field along the axis of a current carrying circular coil.
12. Series LCR resonance circuit - Determination of "Q" factor.
13. Thomson’s method - determination of \(\frac{e}{m}\) of an electron.
15. Prism/Grating - Determination of dispersive power.
16. To determine the wavelength of Laser source.
18. Determination of energy band gap.
20. Determination of Amplitude and Frequency of an AC signal using a CRO.
Note: Minimum of twelve experiments have to be conducted out of the list of experiments given below.

List of Experiments:
- Estimation of total alkalinity of water sample
- Standardization of HCl solution b. Estimation of alkalinity
- Determination of purity of washing soda
- Estimation of Chlorides in water sample
- Standardization of AgNO₃ solution b) Estimation of Chlorides
- Determination of Total Hardness of water sample:
 - Standardization of EDTA solution b) Determination of Total Hardness
- Estimation of Magnesium
 a) Standardization of EDTA solution b) Estimation of Magnesium
- Estimation of Mohr’s salt-permanganometry
- Standardization of KMnO₄ solution b) Estimation of Mohr’s salt
- Estimation of Mohr’s salt –Dichrometry
- Standardization of K₂Cr₂O₇ solution b) Estimation of Mohr’s salt
- Analysis of soil sample:
 - Estimation of Ca and Mg b) Estimation of Organic matter
- Determination of available chlorine in bleaching powder-Iodometry
- Standardization of Hypo solution b) Determination of Available chlorine
- Determination of Iodine in Iodized salt
- Determination of Iron (Ferrous and Ferric) in an iron ore by Permanganometry
- Determination of Zn using Potassium ferrocyanide
- Conductometric titration of an acid vs. base
- pH metric titrations of an acid vs. base

Demonstration Experiments:
- Potentiometric titrations: Ferrous vs. Dichromate
16. Spectrophotometry: Estimation of Mn/Fe
Minimum four experiments should be conducted from each trade

1. Carpentry
To make the following jobs with hand tools
 a) Lap joint
 b) Lap Tee joint
 c) Dove tail joint
 d) Mortise & Tenon joint
 e) Gross-Lap joint

2. Welding using electric arc welding process / gas welding.
The following joints to be welded.
 a) Lap joint
 b) Tee joint
 c) Edge joint
 d) Butt joint
 e) Corner joint

3. Sheet metal operations with hand tools.
 a) Preparation of edges like Saw edge, wired edge, lap seam, grooved seam
 b) Funnel
 c) Rectangular Tray
 d) Pipe joint
 e) Electronic Component joining Techniques like use of crimping tool, soldering of Electronic components, strain guage, thermo couples, use of computer networking tools..

4. House wiring
 a) One lamp by one switch
 b) Two lamps by one switch
 c) Wiring of Tube light
 d) Stair case wiring AND e) Go-down wiring
CYCLE-I Basics of Hardware and Software Exercises:
1. Explore Mother Board components and Layouts, identifying external ports and interfacing, identifying PCI cards and interfacing.
2. Partitioning and formatting Hard disks.
3. Install and Uninstall system and application software.
4. Understand BIOS configuration.
5. Connect computers in a network.
6. Assemble a Computer and troubleshoot a Computer.
7. Operating system commands
 b. File and Text Processing Utilities.
 c. Disk, Compress and Backup Utilities.
 d. Networking Utilities and
 e. Vi editor

CYCLE-II Programming Exercises:
1. Write a program to read x, y coordinates for 3 points and then calculate the area of a triangle formed by them and print the coordinates of the three points and the area of the triangle. What will be the output from your program if the three given points are in a straight line?

2. Write a program, which generates 100 random integers in the range of 1 to 100. Store them in an array and then print the arrays. Write 3 versions of the program using different loop constructs. (eg. For, while, and do write).

3. Write a set of string manipulation functions e.g. for getting a sub-string from a given position. Copying one string to another, reversing a string, adding one string to another.

4. Write a program which determines the largest and the smallest number that can be stored in different data types of like short, int., long, float and double. What happens when you add 1 to the largest possible integer number that can be stored?

5. Write a program, which generates 100 random real numbers in the range of 10.0 to 20.0, and sort them in descending order.

6. Write a function for transposing a square matrix in place (in place means that you are not allowed to have full temporary matrix).

7. First use an editor to create a file with some integer numbers. Now write a program, which reads these numbers and determines their means and standard deviation.

8. Write a program for implementing students management system(attendance, marks and fees reports) using structures and pointers.
9. Implement bisection method to find the square root of a given number to a given accuracy.

10. Implement Newton Raphson method to determine a root of polynomial equation.

11. Given a table of x and corresponding f(x) values, write a program which will determine f(x) value at an intermediate x value using Lagrange’s interpolation.
Unit-I
Partial Differential Equations:

Unit-II.
Integral Transforms:
Introduction, Definition, Fourier Integral Theorem (without proof), Fourier sine and cosine integrals, Complex form of the Fourier Integral, Fourier Transforms, Properties of Fourier Transforms, Finite Fourier sine and cosine transforms, Convolution theorem (without proof), Parseval's Identity for Fourier Transforms (without proof).

Unit-III

Unit-IV

Reference Books:

CSE/IT 212 DISCRETE MATHEMATICAL STRUCTURES L T P M
4 1 0 100

UNIT – I (16 Periods)

UNIT – II (16 Periods)

UNIT – III (16 Periods)
Recurrence relations, Solving recurrence relations by Substitution and generating functions. The methods of characteristic roots, solutions of inhomogeneous recurrence relations. Relations and digraphs, Special properties of binary relations, Equivalence relations. Operations on relation.

UNIT – IV (16 Periods)

TEXT BOOK:

REFERENCE BOOKS:
1. T. Sengadir- Discrete Mathematics-Pearson Education
3. Seymour Lipschutz, Lipson-Discrete Mathematics-Scaums outlines-TMH.
4. Santha-Discrete Mathematics-Cengage Learning
UNIT – I
INTRODUCTION TO CIRCUIT ELEMENTS: Basic definition of the unit of charge, Voltage, Current, Power and Energy, Circuit concept, Active and Passive circuit elements; Ideal, Practical and dependent sources and their V-I characteristics, Source transformation, Voltage and Current division; V-I characteristics of Passive elements and their series / Parallel combination; Kirchhoff's Voltage law and Kirchhoff's Current law, Mesh and Nodal Analysis.

UNIT - II
NETWORK THEOREMS: Star – Delta transformation, Superposition, Thevenin, Norton, Reciprocity, compensation, Maximum power, Tellagan and Application of theorems to DC & AC circuits.
ALTERNATIVE PERIODIC WAVEFORMS: Instantaneous current, voltage and power, peak, effective and average voltage and current, crest factor and form factor, phase difference.
RESONANCE: Series and Parallel resonance, selectivity, bandwidth and Q of tuned circuits. Time constant.

UNIT - III
BIPOLAR JUNCTION TRANSISTOR: Transistor operation, Common base configuration, Transistor amplifying action, Common emitter configuration, Common collector configuration, Operating point, Fixed bias circuit, Emitter stabilized bias circuit, Voltage divider bias, Transistor h-parameter model, Analysis of transistor amplifier using h-parameters. Principal and characteristics of JFET.

UNIT – IV
AMPLIFIERS: Need of biasing, Thermal runaway, Types of biasing-fixed bias, collectorbase bias, self bias, CE amplifier, frequency response.
FEEDBACK AND OSCILLATOR CIRCUITS: Feedback concepts, feed back connection types, Barkhausen criteria, Phase-Shift oscillator, Wien bridge oscillator, Hartley oscillator, Colpitts oscillator.

TEXT BOOKS:
1. B.L. Therja-Textbook of Electrical technology-S.Chand & Co.

REFERENCE BOOKS:
UNIT-I
(14 Periods)
Review of Number systems & codes, Representation of integers and Floating point numbers, Accuracy. Introduction to integer arithmetic operations.
BOOLEAN ALGEBRA AND LOGIC GATES: Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and Properties of Boolean Algebra, Boolean functions, Canonical and Standard Forms, Other operations, Digital Logic Gates.
SIMPLIFICATION OF BOOLEAN FUNCTIONS: The Map Method, Two and three variable Maps, Four-variable Map, Five and six-variable Maps, Product of Sums Simplification, NAND and NOR implementation, other two-level implementations, Don't-Care conditions, The Tabulation Method, Determination of Prime Implicants, Selection of Prime-Implicants.

UNIT – II
(14 Periods)
COMBINATIONAL LOGIC WITH MSI AND LSI: Binary parallel adder, Decimal adder, Magnitude comparator, Decoders, Multiplexers.

UNIT –III
(18 Periods)

UNIT –IV
(18 Periods)
REGISTERS, COUNTERS: Registers, Shift registers, Ripple counters, Synchronous counters, Timing sequences.
MEMORIES: Classification of ROMs, EPROMs, EEPROMs, RAMs
PROGRAMMABLE LOGIC: Read only memory (ROM), Programmable logic device (PLD), Programmable logic array (PLA), Programmable array logic (PAL).

Text Book:
1. Mano and Cletty- Digital Design- Pearson Education

Reference Books:
1. Morris Mano- Computer Engineering Hardware Design- PHI.
2. R.P.Jain- Modern digital electronics, 3rd edition- TMH.
3. Donald e Givone- Digital Principles and Design- TMH.
UNIT–I

UNIT–II

UNIT–III
Virtual Memory Management: Background – Demand Paging – Copy on Write – Page Replacement – Allocation of Frames – Thrashing.

UNIT–IV
TEXT BOOKS:

REFERENCE BOOKS:
4. Bhatt, An Introduction to Operating Systems-PHI
UNIT - I
(18 Periods)
Algorithm Analysis: Mathematical Back Ground, Model, What to Analyze, Running Time Calculations.
Lists: Abstract Data Types, The List ADT, Singly Linked List ADT, Doubly Linked List ADT, Circular Linked List ADT, Polynomial ADT.

UNIT - II:
(17 Periods)
Stacks and Queues: The Stack ADT and its applications such as Infix to Postfix expression conversions, Evaluation of Postfix expressions, Delimiter Matching. The Queue ADT, The Circular Queue ADT.
Sorting Preliminaries - Shellsort - Mergesort - Quicksort

UNIT - III:
(15 Periods)

UNIT - IV:
(15 Periods)
Hashing - General Idea - Hash Function - Separate Chaining - Open Addressing - Linear Probing - Priority Queues (Heaps) - Model - Simple implementations - Binary Heap - Heap Sort.
Graphs: Definitions, representations, graph traversals.

TEXT BOOK:
1. KRUSE, Data Structures and Programming Design-PHI

REFERENCE BOOKS:
4. Samantha, Classical Data Structures-PHI
1. Code the following list ADT operations using array, single linked list, double linked list.
 (a) void is_emptyList(List 1)
 (b) List makeNullList(size n)
 (c) Position firstPost(List 1)
 (d) Position endPost(List 1)
 (e) Position nextPost(List 1, Position p)
 (f) Position prevPos(List 1, position p)
 (g) Position find(List 1, Element x)
 (h) Position findKth(List 1, int k)
 (i) void insert(List 1, Position p)
 (j) void delete(List 1, Position p)
 (k) void append(List 1, Element x)
 (l) int cmp(List 1, Position p1, Position p2)
 (m) int cmp2(List11, List12, Position p1, Position p2)
 (n) void swap(List 1, Position p1, Position p2)
 (o) Element retrieveElement(List 1, Position p)
 (p) void print element(List 1, Position p)

2. Using the above List ADT operations, Write a menu driven program to support following higher level list operations:
 (a) Create null list
 (b) Read a list of elements into the list.
 (c) Insert an element in the Kth position of the list
 (d) Delete an element in the Kth position of the list
 (e) Delete a given element from the list
 (f) Find whether given element is present in the list
 (g) Display the elements of the list

3. Write a program that reads two lists of elements, prints them, reverses them, prints the reverse list, sort the lists, print the sorted lists, merges the list, prints merge list.

4. Implement a polynomial ADT and write a program to read two polynomials and print them, adds the polynomials, prints the sum, multiply the polynomials and print the product.

5. Implement stack ADT and write a program that reads an infix arithmetic expression of variables, constants, operators (+, -, *, /) and converts it into the corresponding postfix form. Extend the program to handle parenthesized expression also.

6. Implement Queue ADT and write a program that performs Radix sort on a given set of elements.

7. Implement the following sorting operations:-
 (a) Shell Sort,
 (b) Heap Sort
 (c) Merge Sort
 (d) Quick Sort

8. Implement Binary Tree ADT and write a program that reads postfix Arithmetic expression form, builds the expression tree and performs tree Traversal on it.

9. Implement Binary search Tree ADT and write a program that interactively allows
 (a) Insertion
 (b) Deletion
 (c) Find_min
 (d) Find_max
 (e) Find operations

10. Implement AVL Tree ADT and Write a program that interactively allows
 (a) Insertion
 (b) Deletion
 (c) Find_min
 (d) Find_max
1. KVL & KCL LAWS
2. Thevenins and Nortons Theorems
3. Characteristics of Silicon, Germanium diodes.
5. Half Wave/Full Wave Rectifier.
6. Transistor Characteristics in CE configuration.
7. Self Bias circuit
8. Wein Bridge Oscillator
9. Colpitts Oscillator
10. Logic Gates using Discrete Components and using Universal Gates
11. Combinational Circuits (Full Adder, Subtractor, Multiplexer, Demultiplexer)
12. Sequential Circuits (Flip Flops, Registers, Counters)
Module-1: Phonetics
 a) Introduction to vowels and consonants
 b) Introduction to Accent, Intonation and Rhythm
Module-2: Reading skills
 a) Reading for main idea.
 b) Scanning and skimming the text
 c) Inference of lexical and contextual meaning
Module-3: Presentation Skills
 a) Debate
 b) Paper Presentation:
 i) Identification of source material
 ii) Arrangement of Collected Data
 c) Extempore
Module-4: Employability Skills
 a) Resume Preparation
 i) Identification of information
 ii) Arrangement of collected data
 b) Group Discussions
 c) Interview Skills
 i) Dress code
 ii) Behavioral Skills
Module-5: Telephonic Skills
 a) Formal & Informal interaction
 b) Receiving Messages & Complaints
 c) Tone modulation

NOTE: 12 Lab Activities are minimum in a Record (125 pages single side book) with contents: Name of the Activity, Source, Skill Improved.

Minimum Requirements:

The Communication Skills Lab shall need two labs. One is Communication Skills Lab with LAN facilitated 60 multimedia systems and English language software suggested by the concern faculty. The other, Conversational Skills Lab with 6 to 10 round tables, 60 movable chairs and audio-visual Devices with LCD Projector.
Suggested Software:
- Cambridge Advanced Learners’ English Dictionary with CD.
- Clarity Pronunciation Power
- The Rosetta Stone English Library
- Dorling Kindersley series of Grammar, Punctuation, Composition etc.
- English in Mind Series : Starter and 1 to 5 work books, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
- Language in Use, Foundation Books Pvt. Ltd with CD.
- Mastering English in Vocabulary, Grammar, Spellings, Composition
- Telephoning in English
- Oxford Advanced Learner’s Compass, 7th Edition
- Communicate to Conquer: A Handbook of Group Discussions and Job Interviews

Reference Books: Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

1. Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
4. Speaking English Effectively by Krishna Mohan & NP Singh (Macmillan)
7. English Skills for Technical Students, WBSCTE with British Council, OL.
UNIT-I:
Probability Densities: Continuous Random Variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Other Probability Densities, Uniform Distribution, Log-Normal Distribution, Gamma Distribution, Beta Distribution, Weibull Distribution, Joint Distributions, Discrete and Continuous.

Sampling Distribution: Populations and Samples, Sampling Distribution of the Mean (σ known), Sampling Distribution of the Mean (σ Unknown), Sampling Distribution of the Variance.

UNIT-II:
Inferences Concerning Means: Point Estimation, Interval Estimation, Tests of Hypotheses, Null Hypotheses and tests of hypotheses, Hypotheses Concerning one Mean, Relation between tests and Confidence Intervals, Operating Characteristic Curves, Inferences Concerning Two Means.

Inferences Concerning Variances: Estimation of Variances, Hypotheses Concerning One Variance, Hypotheses Concerning Two Variances.

UNIT-III:
Inferences Concerning Proportions: Estimation of Proportions, Hypotheses Concerning One Proportion, Hypotheses Concerning Several Proportions, Analysis of r x c Tables, Goodness of Fit.

Analysis of Variance: General Principles, Completely Randomized Designs, Randomized –Block Designs, Multiple Comparisons.

UNIT-IV:
Statistical Content of Quality-Improvement Programs: Quality-Improvement Programs, Starting a Quality Improvement Program, Experimental Designs of Quality-Improvement, Quality Control, Control Charts of Measurements, Control Charts for Attributes, Tolerance Limits, Acceptance Sampling.

Applications to Reliability and Life Testing: Reliability, Failure-Time Distributions, Exponential Model in Reliability, Exponential Model in Life Testing.

TEXT BOOK:

REFERENCE BOOK:

UNIT-I
Introduction: Definition, Scope and Importance.
Natural Resources:
Forest Resources: Use and over-exploitation, Deforestation, Mining, dams and their effects on forests and tribal people.
Water Resources: Use and over-utilization of surface and ground water, floods and droughts, Water logging and salinity, Dams – benefits and problems, Conflicts over water.
Energy resources: Energy needs, Renewable and non-renewable energy sources.
Land resources: Land as a resource, land degradation, soil erosion & desertification, Effects of modern agriculture on land resources.
Ecosystems:
Definition, Structure and functions of an Ecosystems, Biogeochemical cycles-water, carbon, nitrogen and water cycles, Types-Forest, Greenland, Desert, Aquatic ecosystem.

UNIT-II
Biodiversity and its Conservation:

Environmental Pollution: Causes, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, nuclear pollution, Solid waste management.

UNIT-III
Social Issues and Environment:
From unsustainable to sustainable development, Population growth and environment, Green revolution, Rain water harvesting, watershed management, cloud seeding, Resettlement and rehabilitation of people - problems and concerns, Environmental Impact Assessment.

Climate Changes:
Global warming & Green house effect, Acid rain, Ozone layer depletion.

UNIT-IV
Environmental acts:
Prevention and Control of Water pollution & Air Pollution act, Environmental protection act, Wild life protection act, Forest Conservation act.

International Conventions:
Case Studies:
Chipko movement, Narmada Bachao Andolan, Silent Valley Project, Madhura Refinery and Taj Mahal, Chernobyl Nuclear Disaster, Ralegaon Siddhi, Florosis and Bhopal Tragedy.

Field work:
Visit to a local area to document environmental assets – river/ forest/ grassland / hill /mountain.
Study of local environment-common plants, insects, birds.
Study of simple ecosystems – pond, river, hill, slopes etc.
Visits to industries, water treatment plants, effluent treatment plants.

Text Books
1. Environmental Studies, by Dr. Suresh K. Dhameja, Published by S.K. Kataria & Sons, Ludhiana.

Reference Books
UNIT - I
(20 Periods)
BASIC COMPUTER ORGANIZATION AND DESIGN: Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction cycle, Memory-Reference Instruction, Input-Output and Interrupt, Design of Basic Computer, Design of Accumulator Logic.

UNIT-II
(20 Periods)
MICRO PROGRAMMED CONTROL: Control Memory, Address Sequencing, Micro-Program example, Design of Control Unit.
CENTRAL PROCESSING UNIT: General register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC).

UNIT -III
(15 periods)
MEMORY ORGANIZATION: Memory Hierarchy, Main Memory, Auxiliary memory, Associative Mem Cache Memory, Virtual Memory, Memory Management hardware.

UNIT-IV
(15 periods)

Textbook:

Reference Books:
3. Tanenbaum: Structured Computer Organization, Pearson Education
UNIT – I
Databases and Database Users: Introduction - An Example - Characteristics of the Database Approach - Actors on the Scene - Workers behind the Scene - Advantages of Using the DBMS Approach - A Brief History of Database Applications - When Not to Use a DBMS
Database System Concepts and Architecture: Data Models, Schemas, and Instances - Three-Schema Architecture and Data Independence - Database Languages and Interfaces - The Database System Environment - Centralized and Client/Server Architectures for DBMSs - Classification of Database Management Systems

UNIT – II
The Relational Data Model and Relational Database Constraints: Relational Model Concepts - Relational Model Constraints and Relational Database Schemas - Update Operations, Transactions, and Dealing with Constraint Violations - Relational Database Design Using ER-to-Relational Mapping
The Relational Algebra and Relational Calculus: Unary Relational Operations: SELECT and PROJECT - Relational Algebra Operations from Set Theory - Binary Relational Operations: JOIN and DIVISION - Additional Relational Operations - The Tuple Relational Calculus - The Domain Relational Calculus
SQL-99: Schema Definition, Constraints, Queries, and Views: SQL Data Definition and Data Types - Specifying Constraints in SQL - Schema Change Statements in SQL - Basic Queries in SQL - More Complex SQL Queries - INSERT, DELETE, and UPDATE Statements in SQL - Views (Virtual Tables) in SQL

UNIT – III
Disk Storage, Basic File Structures: Introduction - Secondary Storage Devices - Buffering of Blocks - Placing File Records on Disk - Operations on Files - Files of Unordered Records (Heap Files) - Files of Ordered Records (Sorted Files) - Types of Single-Level Ordered Indexes - Multilevel Indexes - Dynamic Multilevel Indexes Using B-Trees and B+-Trees - Indexes on Multiple Keys
Functional Dependencies and Normalization for Relational Databases: Informal Design Guidelines for Relation Schemas - Functional Dependencies - Normal Forms Based on Primary Keys - General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form
UNIT – IV (18 Periods)

Introduction to Transaction Processing Concepts and Theory: Introduction to Transaction Processing - Transaction and System Concepts - Desirable Properties of Transactions - Characterizing Schedules Based on Recoverability - Characterizing Schedules Based on Serializability

Concurrency Control Techniques: Two-Phase Locking Techniques for Concurrency Control - Concurrency Control Based on Timestamp Ordering – Multiversion Concurrency Control Techniques - Validation (Optimistic) Concurrency Control Techniques - Granularity of Data Items and Multiple Granularity Locking

Database Recovery Techniques: Recovery Concepts - Recovery Techniques Based on Deferred Update - Recovery Techniques Based on Immediate Update - Shadow Paging

Database Security: Introduction to Database Security Issues - Discretionary Access Control Based on Granting and Revoking Privileges - Mandatory Access Control

TEXT BOOKS:

REFERENCES:

1. Introduction to Database Systems, C.J.Date Pearson Education
UNIT-I
INTRODUCTION :- Need for object oriented programming paradigm, Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance), method binding, overriding and exceptions, summary of oop concepts, coping with complexity, abstraction mechanisms.
C++ Class Overview- Class Definition, Objects, Class Members, Access Control, Class Scope, Constructors and destructors, parameter passing methods, Inline functions, static class members, this pointer, friend functions, dynamic memory allocation and deallocation (new and delete), exception handling.

UNIT-II
Function Over Loading, Operator Overloading, Generic Programming- Function and class templates,Inheritance basics, base and derived classes, inheritance types, base class access control, runtime polymorphism using virtual functions, abstract classes, streams I/O.
Inheritance – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism-method overriding, abstract classes

UNIT-III
Exception handling and multithreading - Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception sub classes. Differences between multi threading and multitasking, thread life cycle, creating threads, synchronizing threads, daemon threads, thread groups

UNIT-IV
Java Basics - History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and costing, simple java program, classes and objects – concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, parameter passing, recursion, string handling.

TEXT BOOKS
1. STROUTSTRUP-C++ PROGRAMMING-PEARSON EDUCATION
2. Java - The complete reference, 7th edition, Herbert schildt, TMH.

REFERENCE BOOKS
2. An Introduction to OOP, second edition, T. Budd, pearson education.
UNIT I
(18 hours)
Introduction to Unix: Unix architecture, Features of Unix, Vi editor.
Directory Related utilities: pwd, mkdir, ls, cd, rmdir.
File Handling and Text Processing utilities: cp, mv, rm, ln, unlink, lp, cat, more, pg, head, tail, sort, nl, grep, egrep, fgrep, cut, paste, join, tee, w, chgrp, chmod, chown, find, cmp, diff, uniq, tr.
Disk utilities, Backup and other utilities: du, df, mount, umount, umask, ulimit, tar, cpio, dump, who, mail, compress, uncompress, gzip, gunzip, crypt, sed, tty.
Networking utilities: – finger, telnet, rlogin, ftp, rcp, write, talk, wall.
Programmable text processing: awk - awk programs, accessing individual fields, Begin and end, variables, control structures, extended regular expressions, condition Ranges, field separators, Build – in functions.

UNIT-II
(20 hours)
Bourne Shell programming: Shell, functions of the shell, Meta characters, Input redirection, Output redirection, pipes, shell as programming language, shell variables, predefined local variables, predefined environment variables, Arithmetic, conditional expressions, control structures, positional parameters, passing command line arguments, Built – in Shell commands and shell programs.

UNIT-III
(18 hours)
File management system calls: Regular file management system calls – open(), read(), write(), lseek(), Close(), unlink(), stat(), getdents(). Miscellaneous file management system calls – chown() and fchown(), chmod() and fchmod(), dup() and dup2(), fcntl(), ioctl(), link(), mknod(), sync(), truncate() and ftruncate().

UNIT IV
(18 hours)
Signals: The defined signals, A list of signals, terminal signals, Requesting on Alarm signal – alarm(), handling signals – signal(), protecting critical code and chaining interrupt handlers, sending signals – kill(), Death of children, suspending and Resuming processes, process Group’s and control terminals.
Inter process communication: Pipes, Sockets, shared memory, semaphores.
Text Book:
1 “Unix for programmers and users” 3rd edition by Graham Glass, King Ables, Pearson Education.
Reference Books:
I. Simple queries: selection, projection, sorting on a simple table
 i. Small-large number of attributes
 ii. Distinct output values
 iii. Renaming attributes
 iv. Computed attributes
 v. Simple-complex conditions (AND, OR, NOT)
 vi. Partial Matching operators (LIKE, %, _, *, ?)
 vii. ASC-DESC ordering combinations
 viii. Checking for Nulls

II. Multi-table queries (JOIN OPERATIONS)
 i. Simple joins (no INNER JOIN)
 ii. Aliasing tables – Full/Partial name qualification
 iii. Inner-joins (two and more (different) tables)
 iv. Inner-recursive-joins (joining to itself)
 v. Outer-joins (restrictions as part of the WHERE and ON clauses)
 vi. Using where & having clauses

III. Nested queries
 i. In, Not In
 ii. Exists, Not Exists
 iii. Dynamic relations (as part of SELECT, FROM, and WHERE clauses)

IV. Set Oriented Operations
 i. Union
 ii. Difference
 iii. Intersection
 iv. Division

V. DDL & TCL Commands.
 i. Creating objects: tables, views, users, sequences, Collections etc.
 ii. Privilege management through the Grant/Revoke commands
 iii. Transaction processing using Commit/Rollback
 iv. Save points.

VI. PL/SQL Programming I
 i. Programs using named and unnamed blocks
 ii. Programs using Cursors, Cursor loops and records

VII. PL/SQL Programming II
 i. Creating stored procedures, functions and packages
 ii. Error handling and Exception
 iii. Triggers and auditing triggers

VIII. User Defined Types
 i. Creating Objects
 ii. Creating User Defined Operators

IX. Forms designing

X. Generating Reports

XI. Database creation using schema builder

XII. Query execution using query builder
CYCLE-I C++ Programming

1. Program that implements stack operations using classes and objects.
2. Program performing complex number addition using friend functions.
3. Program for complex number addition using operator overloading.
4. Program to perform string operations by overloading operators.
5. Program on hierarchical inheritance showing public, private and protected inheritances.
6. Program for computation of students result using hybrid inheritance.
7. Program implementing bubble-sort using templates.
8. Program on virtual functions.
10. Program for copying one file to another file using streams.
11. Program for writing and reading a class object to a file.

CYCLE –II JAVA PROGRAMMING

1. Write a java program to demonstrate static member, static method and static block.
2. Write a java program to demonstrate method overloading and method overriding.
3. Write a java program to demonstrate finals, blank finals, final methods, and final classes.
4. Write a java program to demonstrate synchronous keyword.
5. Write a java program to implement multiple inheritance.
6. Write a program to demonstrate packages.
7. Write a java program to crate user defined exception class and test this class.
LABCYCLE I: (Working with Commands and Shell Programming)

1. Working with different Unix commands, Pipes, I/O redirection.
2. Write Shell Programs for the following
 a) Display all the words which are entered as command line arguments.
 b) Changes Permissions of files in PWD as rwx for users.
 c) To print the list of all sub directories in the current directory.
 d) Program which receives any year from the keyboard and determine whether the year is leap year or not. If no argument is supplied the current year should be assumed.
 e) Program which takes two file names as arguments, if their contents are same then delete the second file.
3. Write shell scripts for the following
 a) To print the given number in the reversed order.
 b) To print first 25 Fibonacci numbers.
 c) To print the Prime numbers between the specified range.
 d) To print the first 50 Prime numbers.
4. Write shell scripts for the following
 a) To delete all lines containing the word ‘unix’ in the files supplied as arguments.
 b) Menu driven program which has the following options.
 i) contents of /etc/passwd
 ii) list of users who have currently logged in.
 iii) present working directory.
 iv) exit.
 c) For sorting, searching and insertion, deletion of elements in the list
5. Program to transfer the data from one file to another file by using un-buffered I/O.
6. Program to create two processes to run a loop in which one process adds all even numbers and the other adds all the odd numbers (Hint: use fork()).
7. Program to create to process ‘i’ and sends data to process ‘j’, prints the same after receiving it. (Hint: use vfork()).
8. Program to demonstrates orphan process.
9. Program which demonstrates how to avoid Zombie using wait()

LABCYCLE II: (Working with Programs using System Calls)

1. Simulate the following CPU scheduling algorithms-
 a) Round Robin b) SJF c) FCFS d) Priority
2. Simulate all file allocation strategies
 a) Sequential b) Indexed c) Linked
3. Simulate MVT and MFT
4. Simulate all File Organization Techniques
 a) Single level directory b) Two level c) Hierarchical d) DAG
5. Simulate Bankers Algorithm for Dead Lock Avoidance
6. Simulate Bankers Algorithm for Dead Lock Prevention
7. Simulate all page replacement algorithms
 a) FIFO b) LRU c) LFU Etc. ...
8. Simulate Paging Technique of memory management Program which demonstrates deadlock between two processes.
9. Programs on Inter process communication using pipes and shared memory.
10. Create a semaphore operation on a shared file for write but not read.
UNIT-I (18 Periods)

UNIT-II (16 Periods)

UNIT-III (16 Periods)

UNIT-III (18 Periods)
Advanced Micro Processors - Introduction to 80286, Salient Features of 80386, Real and Protected Mode Segmentation & Paging, Salient Features of Pentium, Branch Prediction, Overview of RISC Processors. 8051 Microcontroller Architecture, Register set of 8051, Modes of timer operation, Serial port operation, Interrupt structure of 8051, Memory and I/O interfacing of 8051.

TEXT BOOKS:
3. “Bahadur”, Microprocessors – Prentice Hall of India
4. “Krishna Kant”, Microprocessor and Microcontrollers PHI

REFERENCES:
UNIT – I
The Physical Layer: The Theoretical Basis for Data Communication, Guided Transmission Media, Wireless transmission, the public switched telephone network
The Data Link Layer: Data Link Layer Design Issues, Error Detection and Correction, Sliding Window Protocols.

UNIT – II
The Medium Access Control Sub-layer: The channel allocation problem, Multiple Access Protocols, Ethernet, Data Link Layer Switching.

UNIT – III
The Network Layer: Network Layer Design Issues, Routing Algorithms, Congestion control algorithms, Quality of Service.
Internet Working, The Network Layer in the Internet

UNIT – IV:

Prescribed Book:

Reference Books:
UNIT – I
(18 Hours)
Automata: Introduction to Automata, The central concepts of automata theory - Alphabets, Strings, Languages.
Finite Automata: An Informal picture of finite automata, Deterministic finite automata (DFA) - Definition of DFA, DFA processing strings, Notations for DFA, Extended transition function, the language of DFA, Non deterministic finite automata (NFA) – Definition of NFA, Extended transition function, the language of NFA,Equivalence of DFA and NFA Finite
Automata with ε transitions: Use of ε - transition, notation for an ε - NFA, Epsilon closures, extended transitions and languages, Applications.

UNIT – II
(15 Hours)
Regular Expressions and Languages: Regular expressions, finite automata and regular expressions, Algebraic laws of regular expressions.
Properties of Regular Languages: Proving languages are not regular – Pumping lemma for regular languages, Applications of the pumping lemma, Closure Properties of Regular Languages, Equivalence and minimization of automata – Minimization of DFA

UNIT – III
(Construction based treatment & proofs are excluded)
(18 Hours)
Pushdown Automata: Definition of the Pushdown automata, the languages of PDA, Equivalences of PDA’s and CFG’s.
Context free languages: Normal form’s for context- Free grammars, the pumping lemma for context free languages.

UNIT – IV
(15 Hours)
Properties of Context free languages: closure properties for context free languages, Decision properties for CFL’s.
Introduction to Turing Machines: The Turing Machine, programming techniques for Turing machines.
Undecidability: a language that is not recursively enumerable, an undecidable problem that is RE, Undecidability problems about TM, Post’s Correspondence problem.

Textbook:

Reference Books:
1. Cohen, ‘Computer Theory’,
UNIT - I

Core Java Overview: Object oriented concepts, Exception Handling, Multi Threading
Introduction to JDBC: Overview of JDBC API, The Java.sql package, JDBC Drivers,
Executing SQL commands using JDBC Drivers, static and dynamic Execution of
SQL statements, Execution of Stored Procedures using JDBC. Introduction to
Transactions and Transaction Methods.
Introduction to JNDI, Introduction to Data Source and Connection pooling,
Introduction to Web Applications, Web Servers Overview of J2EE Technologies.

UNIT - II

Introduction to Java Servlets, Static and Dynamic contents, Servlet life Cycle and
Life cycle methods, Servlet Request and Response Model, Deploying a Servlet,
Servlet State Transitions, Servlet Configuration and Servlet Context, Servlet
Redirection and Request Dispatch, Servlet Synchronization and Thread Model.
Maintaining Client State: Cookies, URL rewriting, Hidden form fields, Session
Tracking.

UNIT - III

Introduction to JSP: JSP & Servlet as Web Components, Servlets vs. JSP, JSP
Lifecycle, JSP Page Lifecycle Phases, General Rules of Syntax, JSP syntactic
elements, JSP element syntax, Template content, JSP elements-directives,declarations,expressions,scriptlets,actions. JSP Standard
Actions: jsp:useBean, jsp:get Preoperty, jsp:set Property, jsp:include, jsp:forward,

UNIT - IV

Anything Technique Library, Form Completion, Realtime Validation, Propagating
Client-Side View State Direct Web Remoting, Ajax Components, Hybrid
Components, Keeping JavaScript Out of Renderers, Transmitting JSP Tag Attributes
to JavaScript Code, Ajax4jsf, Implementing Form Completion with
Ajax4jsf, Implementing Realtime Validation with Ajax4jsf, Introduction to Java Web
Services, Future Trends in Web Technology WEB 2.0 and Beyond- Flex.

Text Books:

References:

UNIT – I
Divide and Conquer: Structure of divide and conquer algorithms: examples, quick sort, Strassen Multiplication; Analysis of divide and conquer run time recurrence relations.

UNIT – II
Dynamic Programming: Overview, difference between dynamic programming and divide and conquer, Applications: Shortest path in graph, Matrix multiplication, Traveling Salesman Problem, longest Common sequence.

UNIT – III
Graph Searching and Traversal: Overview, Traversal methods (depth first and breadth first search), Applications of DFS – connected components, Bi-connected components.

UNIT – IV
Branch and Bound: LC searching Bounding, FIFO branch and bound, LC branch and bound application: 0/1 Knapsack problem, Travelling Salesman Problem.
Computational Complexity: Complexity measures, Polynomical Vs Non-polynomial time complexity; NP-hard and NP-complete classes, examples.

TEXT BOOK:
2. Design Analysis of Algorithms – Pearson Education

REFERENCE BOOKS:

CSE/IT 316 SOFTWARE ENGINEERING

UNIT-I (18hours)

UNIT- II (15hours)
SOFTWARE REQUIREMENTS: Functional and non-functional requirements, User requirements, System requirements, Interface specification, the software requirements document. REQUIREMENTS ENGINEERING PROCESS: Feasibility studies, Requirements Elicitation and analysis, Requirements Validation, Requirements management.
OBJECT ORIENTED DESIGN: Objects and object classes, An Object Oriented design process, Design evolution.

UNIT –III (18hours)
Analysis, Interface Design Steps, Design Evaluation

UNIT –IV (15hours)
TESTING STRATEGIES: A Strategic Approach to software testing, Test strategies for Conventional Software, Black-Box and White-Box Testing, White-Box Testing, Validation Testing, System Testing, the art of Debugging.

Textbooks:

Reference Books:
1. Program on multi-threading showing how CPU time is shared among all the threads.

2. Program for Producer-Consumer problem using threads.

3. Program to send messages across two machines using simple sockets.

4. Write an applet program to demonstrate Graphics class.

5. Write GUI application which uses awt components like label, button, text filed, text area, choice, checkbox, checkbox group.

6. Write a program to demonstrate MouseListener, MouseMotionListener, KeyboardListener, ActionListener, ItemListener.

7. Develop swing application which uses JTree, Jtable, JComboBox.

8. Write a JDBC Application to implement DDL and DML commands.

9. Write a program to implement client/server applications using connection oriented & connection less mechanisms.

10. Write JavaScript to validate the following fields of the above registration page.
 Name (Name should contain alphabets and the length should not be less than 6 characters).
 Password (Password should not be less than 6 characters length).
 E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com)
 Phone number (Phone number should contain 10 digits only).
 Note : You can also validate the login page with these parameters.

11. Install a database(Mysql or Oracle).
 Create a table which should contain at least the following fields: name, password, email-id, phone number(these should hold the data from the registration form).
 Practice ‘JDBC’ connectivity.
 Write a java program/servlet/JSP to connect to that database and extract data from the tables and display them. Experiment with various SQL queries.
 Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page

12. Client server programming using servlets, ASP and JSP on the server side and java script on the client side
CYCLE-I. Microprocessor 8086:
1. Introduction to MASM/TASM.
2. Arithmetic operation – Multi byte Addition and Subtraction, Multiplication and Division – Signed and unsigned Arithmetic operation, ASCII – arithmetic operation.
3. Logic operations – Shift and rotate – Converting packed BCD to unpacked BCD, BCD to ASCII conversion.
4. By using string operation and Instruction prefix: Move Block, Reverse string, Sorting, Inserting, Deleting, Length of the string, String comparison.
5. DOS/BIOS programming: Reading keyboard (Buffered with and without echo) – Display characters, Strings.

CYCLE-II. Interfacing:
1. 8259 – Interrupt Controller: Generate an interrupt using 8259 timer.
2. 8279 – Keyboard Display: Write a small program to display a string of characters.
3. 8255 – PPI: Write ALP to generate sinusoidal wave using PPI.
4. 8251 – USART: Write a program in ALP to establish Communication between two processors.

CYCLE-III. Microcontroller 8051
1. Reading and Writing on a parallel port.
2. Timer in different modes.
3. Serial communication implementation.

Equipment required for Laboratories:
1. 8086 µP Kits
2. 8051 Micro Controller kits
3. Interfaces/peripheral subsystems
 i) 8259 PIC
 ii) 8279-KB/Display
 iii) 8255 PPI
 iv) 8251 USART
4. ADC Interface
5. DAC Interface
6. Traffic Controller Interface
7. Elevator Interface
LAB CYCLE – I

1. Write a program to:
 a. Read the dotted decimal IP address and print in the binary format.
 b. Find the classification of an IP address.
 c. Read the binary format IP address and print in the dotted decimal format.
 d. Find the network ID, host ID and the Subnet ID of a given IP address.

2. Write a program to implement:
 b. Framing Methods: Bit stuffing & Character Stuffing

3. Write a program to implement the following Static - Routing algorithms:
 b. Multicast Routing (Using Minimum Spanning Tree algorithms).

4. Write a program to implement the following Dynamic - Routing algorithm:
 a. Distance - Vector Routing (Using Fulkerson – Ford or Bell man Ford).

LAB CYCLE – II:

To implement the following Client & Server Programs using ‘C’ Language.
5. Iterative Server (TCP/UDP)
6. Simple Authentication Server (TCP/UDP)
7. Computational Server (TCP/UDP)
9. Simple FTP Server (TCP)
10. Secure Server(TCP)

LAB CYCLE – III:

15. Implementation of Firewalls.
16. Develop a simple application using any public key cryptosystems.
UNIT-I (17 Periods)
CLASSICAL ENCRYPTION TECHNIQUES: Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor Machines, Steganography.
BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARDS: Block Cipher Principles, The Data Encryption Standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles, Multiple Encryption and Triple DES, Block Cipher modes of Operation
ADVANCED ENCRYPTION STANDARD: Evaluation criteria for AES, The AES cipher.

UNIT-II (15 Periods)
INTRODUCTION TO NUMBER THEORY: Prime Numbers, Fermat’s and Euler’s Theorems, Testing for Primality, The Chinese Remainder Theorem, Discrete Logarithm.
MESSAGE AUTHENTICATION AND HASH FUNCTION: Authentication Requirements, Authentication Functions, Message Authentication Codes, Hash Functions, Security Hash Functions, and MACs.

UNIT-III (14 Periods)
HASH ALGORITHMS: Secure Hash Algorithm, HMAC.
AUTHENTICATION APPLICATIONS: Kerberos, X-509 Authentication Service.

UNIT-IV (14 Periods)
INTRUDERS: Intruders, Intrusion Detection, Password Management.

TEXT BOOK:
REFERENCE BOOKS:

UNIT I
INTRODUCTION TO COMPILING - Compilers – Analysis of the source program – Phases of a compiler – Cousins of the Compiler – Grouping of Phases – Compiler construction tools.
LEXICAL ANALYSIS – Role of Lexical Analyzer – Input Buffering – Specification of Tokens-, Recognition of tokens, implementing transition diagrams, a language for specifying lexical analyzers.

UNIT II
Syntax – Directed Translation: Syntax Directed definition, construction of syntax trees

UNIT III

UNIT IV
SYMBOL TABLES: Symbol table entries, Data structures to symbol tables, representing scope information.

Text Books:

References:
2. Lex & Yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
5. Compiler Construction, Louden, Thomson..
UNIT - I
Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, Software Development Life Cycle.
Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams.
Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages.

UNIT - II
Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams.

UNIT -III
Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.
Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams.

UNIT-IV
Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams.
Case Study: The Unified Library application.

TEXT BOOKS:
2. Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: UML 2 Toolkit, WILEY-Dreamtech India Pvt. Ltd.

REFERENCE BOOKS:
5. Appling UML and Patterns: An introduction to Object – Oriented Analysis and Design
UNIT-I
(18 periods)

PROBLEMS, PROBLEM SPACES AND SEARCH
Defining the Problem as a State Space Search - Production Systems - Problem Characteristics - Production System Characteristics - Issues in the Design of Search Programs.
HEURISTIC SEARCH TECHNIQUES

UNIT-II
(14 periods)

KNOWLEDGE REPRESENTATION USING PREDICATE LOGIC
Representing Simple Facts in Logic - Representing Instance and ISA Relationships - Computable Functions and Predicates - Resolution.
REPRESENTING KNOWLEDGE USING RULES

UNIT-III
(15 Periods)

SLOT – AND – FILLER STRUCTURES
Semantic Nets - Conceptual Dependency – Scripts.
PLANNING

UNIT-IV
(13 Periods)

LEARNING
EXPERT SYSTEMS
Representing and using domain knowledge – Expert system shells – Explanation – Knowledge Acquisition.

Textbooks:

Reference Books:
Basic Structure of a Game, Using XNA and working with Xbox 360,
Structure of an XNA application, Working with XNA's Sprite Manager,
Component programming, C# vs. Java.

UNIT-II

2D Math: Vectors, matrices, translations & Rotations, Collisions -- static and dynamic,
Spatial Partitioning Data Structures, Mastering Menus: Event Driven Programming,
Callbacks: Delegates vs. Interfaces, Menu Animation

UNIT-III

Parallel Programming: Review of parallel fundamentals, Parallel programming for games,
Working with console hardware, Tools and Pipelines, Playing with others: Networking,
Quick review of parallel concepts.

UNIT-IV

Memory Management, C# Garbage Collection, Preallocation: Creating your own (simple!) memory manager.

Basic Artificial Intelligence: State Machines, Path Finding

Text Book:
UNIT – I

Unit - II

Unit - III
Applications: Interfacing with Keyboards, Displays, D/A and A/D Conversions, Multiple Interrupts, Serial Data Communication.
Introduction to Real-Time Operating Systems: Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment.

Unit - IV

TEXT BOOKS:
1. Computers as Components-principles of Embedded computer system design, Wayne Wolf, Elseveir.
REFERENCES:
1. Embedding system building blocks, Labrosse, via CMP publishers.
2. Embedded Systems, Raj Kamal, TMH.
3. Micro Controllers, Ajay V Deshmukhi, TMH.
5. Microcontrollers, Raj kamal, Pearson Education.
6. An Embedded Software Primer, David E. Simon, Pearson Education
UNIT I

Multimedia Authoring and data representations: Introduction to multimedia and hypermedia, WWW, overview of multimedia software tools.
Multimedia Authoring and Tools: Multimedia authoring some useful editing and authoring tools, VRML.

UNIT II

Basics of Digital Audio: Digitization of sound, MIDI, Quantization and transmission of audio.
Lossless compression algorithms: Run-length coding, Variable length coding, Dictionary based coding, Arithmetic coding, loss less image compression.
Lossy Compression Algorithms: Quantization, Transform coding, Wavelet based coding.

UNIT III

Image compression Standards: JPEG standard, JPEG 2000 standard, Bi-level image compression standards
Basic Video Compression Techniques: Introduction to video compression, Video compression based on motion compensation. Search for motion vectors, H.261, H.263
MPEG Video Coding: MPEG – 1 and MPEG – 2

UNIT IV

Multimedia Network Communications and applications: Quality of Multimedia data transmission, multimedia over IP, Multimedia over ATM networks.
Content Based retrieval in Digital Libraries: Current Image search systems, C-BIRD, multimedia databases

TEXT BOOKS:

REFERENCES:

1. Multimedia Applications, Steinmetz, Naharstedt, Springer
UNIT I:
White Box Testing: Static Testing – Structural Testing – Challenges

UNIT II:

UNIT III:

UNIT IV:

TEXT BOOKS:

REFERENCES:
2. The craft of software testing - Brian Marick, Pearson Education.
3. Software Testing Techniques – SPD(Oreille)
4. Software Testing – Effective Methods, Tools and Techniques – Renu Rajani, Pradeep Oak, TMK.
UNIT - I

Recognition Methodology: Conditioning, Labeling, Grouping, Extracting, and Matching. Edge detection, Gradient based operators, Morphological operators, Spatial operators for edge detection. Thinning, Region growing, region shrinking, Labeling of connected components.

UNIT - II

Region Analysis: Region properties, External points, Spatial moments, Mixed spatial gray-level moments, Boundary analysis: Signature properties, Shape numbers.

UNIT - III

Object Models and Matching: 2D representation, Global vs. Local features.

UNIT - IV

General Frame Works For Matching: Distance relational approach, Ordered structural matching, View class matching, Models database organization.
General Frame Works: Distance ,relational approach, Ordered ,Structural matching, View class matching, Models database organization.
Knowledge Based Vision: Knowledge representation, Control-strategies, InformationIntegration.
Text Books:

References:

CSE/IT 361 MINI PROJECT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>

CYCLE - 1

1. Problem Statement
 ANALYSIS
2. Requirements elicitation
3. System Requirements Specification
 USECASE VIEW
4. Identification of Actors
5. Identification of Use cases
6. Flow of Events
7. Construction of Use case diagram
8. Building a Business Process model using UML activity diagram

CYCLE - 2

9. Identification of Analysis Classes
10. Identification of Responsibilities of each class
11. Construction of Use case realization diagram
12. Construction of Sequence diagram
13. Construction of Collaboration diagram
14. Identification of attributes of each class
15. Identification of relationships of classes
16. Analyzing the object behavior by constructing the UML State Chart diagram
17. Construction of UML static class diagram

CYCLE - 3
DESIGN
18. Design the class by applying design axioms and corollaries
19. Refine attributes, methods and relationships among classes

MINI PROJECT
The above three cycles are to be carried out in the context of a problem / system chosen by the Project batch and a report is to be submitted at the semester end by the batch.

CSE 362 COMPILER DESIGN LAB L T P M
0 0 3 75

1. Design a Lexical analyzer for a language. The lexical analyzer should ignore redundant spaces, tabs and newlines. It should also ignore comments. Although the syntax specification states that identifiers can be arbitrarily long, you may restrict the length to some reasonable value.

2. Implement the lexical analyzer using JLex, flex or lex or other lexical analyzer generating tools.

3. Design Predictive parser for the given language

4. Design LALR bottom up parser for a language.

5. Convert the BNF rules into Yacc form and write code to generate abstract syntax tree.

6. Write program to generate machine code from the abstract syntax tree generated by the parser.
Instructions:
• Use OpenCV and a webcam to complete this assignment.
• Submit your codes and images or videos.

Objectives:
• Learn about camera geometry.
• Learn to calibrate camera using OpenCV functions.
• Learn to obtain and save camera intrinsic and distortion parameters.
• Learn to undistort image from camera.
• Learn to perform pose estimation of a known object.
• You can use either C or C++ version. All functions shown in this document are C++ functions.

Cycle 1:
• Download Camera Calibration Images (bitmap or JPEG format) from the class website.
• Write your code to read in one of those calibration images.
• The input image must first be converted to grayscale using cvtColor() function (CV_RGB2GRAY).
• Use OpenCV function findChessboardCorners() to find chessboard inner corners.
• Use OpenCV function cornerSubPix() to refine corner locations.
• Use OpenCV function drawChessboardCorners() to draw corners.
• Save and submit one output image (with corners circled).
• This task is only an intermediate stage of calibration procedure. You don’t have to submit your code.

Cycle 2:
• Write a program to read in all 40 of the calibration images one at a time in a loop.
• In the loop, find chessboard corners for each input image.
• Arrange corner points in the format for calibrateCamera() function. You need to learn how to use vector and vector of vectors if you use C++ (Google or email me if you need help).
• Use OpenCV function calibrateCamera() to calculate the intrinsic and distortion parameters.
• Save and submit the intrinsic and distortion parameters.
• Submit your code for this task.

Cycle 3: 20 points
• Write another program to read in your saved intrinsic and distortion parameters from file(s).
• Download the three test images (Far, Close, Turned).
• Use OpenCV function `undistort()` to correct the distortion of these three images.
• Use OpenCV function `absdiff()` to compute the absolute difference between the original and undistorted images.
• Save and submit the three difference images.
• Submit your code for this task.

Cycle 4:
• Download the “Object with Corners” image to see the known object. You don’t have to process this image. Data are provided.
• Download the data file DataPoints.txt that has 20 image points (for x and y in pixels) and 20 object points (for x, y, z in inches).
• Write a program to read in the image and object points.
• Use the C++ version `solvePnP()` function or C version `cvPOSIT()` to estimate the object pose (measured by the camera).
• Submit your code and the output rotation and translation matrices.

Cycle 5: • Repeat Task 2 (including saving calibration parameters in a file) using your own camera.
• You can use your real-time acquisition code for Assignment 2 to capture images.
• Use the chessboard for Assignment 2 and your code for Task 2 above to calibrate your camera.
• Make sure to change the number of corners entered to the calibration function in your code for Task 2.
• Make sure the chessboard paper is on a planar surface.
• Save and submit the intrinsic and distortion parameters of your camera.
• Submit your code for this task.

Cycle 6:
• Repeat Task 3 (including reading calibration parameters from a file) using your own camera.
• Save and submit a video or an image of the absolute difference between the original (captured from your camera) and the undistorted images.
• Submit your code for this task.
UNIT-I

UNIT-II

Short Message Service (SMS): Mobile Computing over SMS – SMS – Value Added Services through SMS –Accessing the SMS Bearer.

UNIT-III

Internet Networks and Interworking: Introduction – Fundamentals of Call Processing – Intelligence in the Networks – SS#7 Signaling – IN Conceptual Model – Softswitch – Programmable Networks – Technologies and Interfaces for IN.

UNIT-IV (18 periods)

TEXT BOOKS:

REFERENCE BOOKS:
UNIT - I (15 Periods)
Parallel Computer Models: The state of computing, Classification of parallel computers, Multiprocessors and Multicomputers, Multivector and SIMD computers. Program and network properties: Conditions of parallelism, Data and resource Dependences, Hardware and Software parallelism, Program partitioning and scheduling, Grain Size and latency, Program flow mechanisms, Control flow versus data flow, Data flow Architecture, Demand driven mechanisms, Comparisons of flow mechanisms.
System Interconnect Architectures: Network properties and routing, Static interconnection Networks, Dynamic interconnection Networks, Multiprocessor system Interconnects, Hierarchical bus systems, Crossbar switch and multi-port memory, Multistage and combining network.

UNIT-II (20 Periods)

UNIT -III (20 Periods)

UNIT-IV (15 Periods)
Parallel Models, Languages and Compilers:
Parallel Programming Models, Parallel Languages and Compilers, Dependence analysis of Data Arrays, code optimization and Scheduling, Loop parallelization and pipelining.

Text Book:

Reference Books:
2. V.Rajaram & C.S.R.Murthy, "Parallel Computer", PHI.

CSE/IT 413 DISTRIBUTED SYSTEMS (12 Hours)

UNIT- I
Communication: Remote Procedure Call Basic RPC Operation, Parameter Passing, Extended RPC Models, Remote Object Invocation - Distributed Objects, Binding a Client to an Object, Static versus Dynamic Remote Method Invocations, Parameter Passing.
Message-Oriented Communication:- Persistence and Synchronicity in Communication, Message Oriented Transient and Persistent Communication.

UNIT- II
Processes: - Threads, Clients, Servers, Code Migration
Naming: Naming Entities - Names, Identifiers and Addresses, Name Resolution, The Implementation of a Name Space. Locating Mobile Entities, Removing Unreferenced Entities

UNIT- III
Synchronization: Clock Synchronization. Logical Clocks, Election Algorithms, Mutual Exclusion.

UNIT- IV
Fault tolerance:- Introduction to Fault Tolerance, Process Resilence, Reliable Client-Server Communication, Reliable Group Communication, Distributed Commit, Recovery.
Distributed File Systems: Sun Network File System, The Coda File System.

Text book:

Reference books:

3. Sinha, *“Distributed Operating System – Concepts and Design”*, PHI.

CSE 414 WEB TECHNOLOGIES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit I

Introduction to XHTML
Cascading Style Sheets (CSS)
JavaScript: Introduction to Scripting
Control Statements, Part 1
Control Statements, Part 2
Functions
Arrays
Objects

(16 Hours)

Unit II

Dynamic HTML: Object Model and Collections
Dynamic HTML: Event Model
XML, RSS (Really Simple Syndication)

(18 Hours)

Unit III

Building Ajax-Enabled Web Applications
Web Servers (IIS and Apache)
Ruby and Ruby on Rails

(16 Hours)

Unit IV

JavaServer Faces Web Applications: Part 1
JavaServer Faces Web Applications: Part 2
Web Services

(20 Hours)

Text Books:

Harvey M. Deitel and Paul J. Deitel, *“Internet & World Wide Web How to Program”*, 4/e, Pearson Education.
References:

cSE/IT 416 PROFESSIONAL ETHICS AND HUMAN VALUES

UNIT – I

UNIT – II

UNIT – III
Engineering as Social Experimentation: Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT – IV
Global Issues: Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Sample Code of Ethics like ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of
Text Books:

References:

Experiments to be performed using hardware devices if the setup is available or the network simulation software.

1. Study of wireless channel characteristics.
2. Overlapping wireless networks for enhanced throughput.
3. Demonstration of interference between devices with multiple standards operating in the same area.
4. Assessment of MACAW protocol.
5. Impact of node mobility on data transfers.
7. Demonstration of Ad-hoc On-demand Distance Vector (AODV) routing protocol.
8. Comparison of AODV vs DV protocols on a MANET.

Demonstration of energy saving protocol stack for wireless mobile environments
1. Write codes different types of styles in CSS.
2. Write java scripts covering Function, recursive functions, Arrays and Objects.
3. Demonstrate collection objects.
4. Demonstrate event model.
5. Write well-formed and valid XML documents.
6. Write code for displaying XML using XSL.
8. Programs on Ruby & Ruby on Rail.
9. Develop a web application using JSF.

Application on Web Services
Module-1: Non-Verbal Communication Skills
 a) Body Language – Voluntary and Involuntary
 b) Kinesics
 c) Facial Expressions
 d) Proxemics
 e) Oculsics
 f) Haptics and Chronemics

Module-2: Cognitive Skills
 d) Creative Thinking
 e) Lateral Thinking
 f) Critical Thinking

Module-3: Motivation and Emotional Intelligence
 d) Motivation
 e) Emotions and Emotional Intelligence

Module-4: Employability Skills
 a) Role-Play
 b) Time Management
 c) Interview Techniques
 d) Group Discussion
 e) Team Work

Module-5: Behaviour Skills
 a) Attitudes
 b) Aggression
c) Conflict Management

Module-6: Interpersonal Skills
a) Stress Management
b) Perception
c) Effective Listening

Suggested Software:
1. Globereena Software
2. K-Van Solutions Software
3. Centronix Software
4. Train 2 Success- CD Series (Zenith Global Consultancy)

Reference Books: Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

1. Soft Skills: Know Yourself & Know the World, Dr.K.Alex, S.Chand Publications.
2. The ACE of Soft Skills: Attitude, communication and Etiquette for Success, by Pearson Publications.
UNIT-I

GENERAL MANAGEMENT: Principles of Scientific Management; Brief Treatment of Managerial Functions.
FORMS OF BUSINESS ORGANISATION: Salient features of sole proprietorship, Partnership, Joint Stock Company – Private limited and public limited companies.

UNIT-II

FINANCIAL MANAGEMENT: Concept of interest, Compound interest, Equivalent cash flow diagram.
DEPRECIATION: purpose, Types of Depreciation; Common methods of depreciation; The straight line method, Declining balance method, the sum of the years digits method.

UNIT-III

JOB ANALYSIS: Job Description and Job specification. Motivational Theories, Leadership Styles & Stress Management.

UNIT-IV

MATERIAL MANAGEMENT: Introduction
PURCHASING: objectives, source selection, vendor rating, procurement methods.
INVENTORY MANAGEMENT: Objectives, Economic Order Quantity, Economic Production Quantity and ABC Analysis.
MARKETING MANAGEMENT: Functions of Marketing, Product life cycle, Channels of distribution, Advertising & sales promotion, Market Research.

Textbooks:

Reference Books:
1. Philip Kotler, ‘Principles of Marketing Management’ PHI
2. Gopalkrishna, ‘Materials Management’ PHI
UNIT – I (12 Periods)
Introduction to machine learning: Concept Learning and the General to Specific Ordering: Concept learning task, concept learning as search, Find-S: finding a Maximally Specific hypothesis, Version Spaces and the Candidate-Elimination algorithm, remarks on Version Spaces and Candidate-Elimination and inductive bias. Decision Tree Learning: Decision Tree representation, appropriate problems for Decision Tree learning, hypothesis space search in Decision Tree learning, inductive bias in Decision Tree learning and issues in Decision Tree learning.

UNIT – II (18 Periods)
Artificial Neural Networks: Neural Network representations, appropriate problems for Neural Network learning, Perceptrons, Multilayer Networks and the Backpropagation algorithm and remarks on the Backpropagation algorithm. Evaluating Hypotheses: Estimating hypothesis accuracy, basics of sampling theory, general approach for deriving confidence intervals, difference in error of two hypotheses and comparing learning algorithms.

UNIT – III (18 Periods)

UNIT – IV (16 Periods)

TEXT BOOKS:
UNIT – I (18 Periods)
Data Warehouse – Introduction, A Multi-dimensional data model, Data Warehouse Architecture, Data Warehouse Implementation.
Data Mining – Introduction, Data Mining, Kinds of Data, Data Mining Functionalities, Classification of Data Mining Systems, Major issues in Data Mining.

UNIT – II (18 Periods)
Data Preprocessing – Data cleaning, Data Integration & Transformation, Data Reduction, Discretization & Concept Hierarchy Generation, Data Mining Primitives.
Mining Association roles in large databases – Association rule mining, mining single-dimensional Boolean Association rules from Transactional Databases, Mining Multi-dimensional Association rules from relational databases & Data Warehouses.

UNIT – III (15 Periods)

UNIT – IV (20 Periods)
Classification & Prediction – Introduction, Classification by Decision tree induction, Bayesian Classification, , Classification by Back propagation, Other Classification Methods, Prediction, Classifier accuracy.
Mining Complex Type of Data – Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Mining Spatial Databases, Mining Multimedia Databases, Mining Text Databases, Mining the World Wide Web.

Textbooks:
1. Data Mining Concepts & Techniques – Jiawei Han Micheline Kamber – Morgan Kaufmann Publishers.

Reference Books:
2. Data Mining (Introductory and Advanced Topics) – Margaret H.Dunham – Pearson Education.
3. Data Warehousing in the real world – A Practical guide for Building decision support systems – Sam Anahory, Dennis Murray – Pearson Education.
UNIT I (14 Periods)

UNIT II

UNIT III
Searching, Merging, and Sorting: Searching, Merging, Sorting, Sorting Networks, Selection. (12)

Graphs: Connected Components, Minimum Spanning Trees, Biconnected Components, Ear Decomposition, Directed Graphs. (12)

UNIT IV
Realistic Models of Parallel Computation: Bulk Synchronous Parallel (BSP), LogP, Shared-Memory (SMP), Clusters of SMPs, Communication Primitives, Sorting, 2D FFT (12)

Textbook:

Reference Books:
UNIT - I
(10 Periods)
Introduction to Natural Language Understanding, Syntactic Processing: Grammars and Parsing

UNIT-II:
(25 Periods)

UNIT –III
(15 Periods)
Semantic Interpretation:
Linking Syntax and Semantics, Ambiguity Resolution, other Strategies for Semantic Interpretation.

UNIT-IV
(20 Periods)

TEXT BOOK:

REFERENCE BOOKS:
1. Speech and Language Processing – Daniel Jurafsky, James H.Martin.
2. Foundations of Statistical Natural Language Processing – Christopher Manning, Hinrich Schutze, MIT Press.

UNIT-II

The legal framework, Confidential Information, Protection of Confidential Information, Nature of confidential information , Confidence implied in a contract, Confidence implied by circumstances, Identification of confidential information.

Unit –III

Essential requirements of breach of confidence, Exceptions to breach of confidence, Remedies for breach of confidence , Employee Privacy Rights , Employer Protection

Intellectual Property on The Internet , Squatting in Cyberspace: A Web of Deception, WIPO Cases Involving Complainants from India, Intellectual Property (Trade Marks), Domain Names: ICANN and New Remedies Against Cybersquatting, Domain names, copyright intellectual Property and the Internet: A case study of the Indian approach to intellectual property and e-commerce, DVD Audio Disc Copy Protection, Systems-on-a-Chip: Intellectual Property and Licensing Issues

UNIT – IV

Introduction, Personal Data, Data Subject, Data Processing: Definition and Grounds, Purpose Limitation , Legitimate Purposes, Data Controllers And Data Processors, Establishment, Data - Access and Information, Anonymous and Pseudonymous Data, Freedom of Expression , Free Flow of Data within the Eu, Data Transfer, Data Minimization
Observations on the Preamble, Jurisdictions proposing to adopt provisions of the Model Law, UNCITRAL Model Law on Electronic Commerce Part One. Electronic Commerce In General, Sphere of application, UNCITRAL Model Law, Information Technology Act, 2000: An overview, Existing restrictions on FDI in domestic trading to be applicable to e-commerce as well.

Text Books:

Reference Books:

UNIT-I
INTRODUCTION TO MULTIPROCESSORS AND SCALABILITY: Scalable design principles – Principles of processor design – Instruction Level Parallelism, Thread level parallelism. Parallel computer models -- Symmetric and distributed shared memory architectures – Performance Issues, Brief introduction to cache hierarchy and communication latency, Shared memory multiprocessors, General architectures and the problem of cache coherence, Synchronization primitives: Atomic primitives; locks: TTS, ticket, array; barriers: central and tree; performance implications in shared memory programs;

UNIT-II
Multi-core Architectures - Introduction to multi-core architectures - Software and hardware multithreading – SMT and CMP architectures – Design issues – Case studies – Intel Multi-core architecture – SUN CMP architecture, issues involved into writing code for multi-core architectures, development of programs for these architectures, program optimizations techniques, building of some of these techniques in compilers/

UNIT III

Unit-IV: Chip multiprocessors: Why CMP (Moore's law, wire delay); shared L2 vs. tiled CMP; core complexity; power/performance; Snoopy coherence: invalidate vs. update, MSI, MESI, MOESI, MOSI; performance trade-offs; pipelined snoopy bus design; Memory consistency models: SC, PC, TSO, PSO, WO/WC, RC; Chip multiprocessor case studies: Intel Montecito and dual-core, Pentium4, IBM Power4, Sun Niagara

TEXTBOOKS:
2. Michael J Quinn, Parallel programming in C with MPI and OpenMP, Tata Mc graw Hill, 2003.

REFERENCES:
UNIT – I (15 Periods)
1. Introduction
 Definitions, Sequencing, Molecular Biology and Bioinformatics, Biological sequence/structure, Genomoe Projects, Pattern Recognition and prediction, Folding problem, Sequence Analysis, Homology and Analogy, Bioinformatics Applications, Central Dogma of Molecular Biology

2. Information Resources
 Biological databases, Primary Sequence databases, Protein sequence databases, Secondary databases, Protein pattern databases, and Structure classification databases DNA sequence databases, specialized genomic resources

UNIT – II (18 Periods)
3. DNA Sequence Analysis
 Importance of DNA analysis, Gene Structure and DNA sequences, Features of DNA sequence analysis, EST (Expressed Sequence Tag) searches, Gene Hunting, Profile of a cell, EST analysis, Effects of EST data on DNA databases, The Human Genome Project

4. Pair Wise Alignment Techniques
 Database Searching, Alphabets and complexity, algorithm and programs, comparing two sequences, sub-sequences, Identity and similarity, The Dot plot, Local and Global similarity, Different alignment techniques, Scoring Matrices, Dynamic Programming, Pair wise database searching

UNIT – III (15 Periods)
5. Multiple sequence alignment & Phylogenetic Analysis
 Definition and goal, The consensus, Computational complexity, Manual methods, Simultaneous methods, Progressive methods, Databases of Multiple alignments, and searching, Applications of Multiple Sequence alignment, Phylogenetic Analysis, Methods of Phylogenetic Analysis, Tree Evaluation, Problems in Phylogenetic analysis, Tools for Phylogenetic Analysis

6. Secondary database Searching
 Importance and need of secondary database searches, secondary database structure and building a sequence search protocol

UNIT – IV (12 Periods)
7. Gene Expression and Microarrays
 Introduction, DNA Microarrays, Clustering Gene Expression Profiles, Data Sources and tools, Applications

8. Analysis Packages
 Analysis Package structure, commercial databases, commercial software, comprehensive packages, packages specializing in DNA analysis, Intranet Packages, Internet Packages.
Text Book:
1. Introduction to Bioinformatics T K Attwood And D.J. Parry-Smith, Pearson
2. Bioinformatics methods and applications S.C. Rastogi, N. Mendiratta And P.Rastogi., PHI

Reference Books:
1. Introduction to Bioinformatics Arthur M. Lesk OXFORD Publishers (Indian Edition)
2. Elementary Bioinformatics, Imtiyaz Alam Khan, Pharma Book Syndicate
UNIT – I
J2EE Overview
Multi-Tier Architecture
Best Practices
Design Patterns and Frameworks
Java and XML
(16 Hours)

UNIT – II
Java Servlets
Java Server Pages
Enterprise JavaBeans
(20 Hours)

UNIT – III
Java Mail API
Java Interface Definition Language and CORBA
Java Remote Method Invocation
Java Message Service
Java Message Service
Java Naming and Directory Interface API
(18 Hours)

UNIT – IV
SOAP
Universal Description, Discovery
Electronic Business XML
Java API for XML Registries (JAXR)
Web Services Description Language (WSDL)
(20 Hours)

Books:

References:
4. James McGovern, et.al “J2EE Bible”.
5. BV Kumar, S Sangeetha, SV Subrahmanyam “J2EE Architecture” Tata McGraw Hill.
UNIT - I

Cloud Computing with the Titans – Google, EMC, NetApp, Microsoft, Amazon, Salesforce.com, IBM, Partnerships,

UNIT - II

Hardware and Infrastructure – Clients, Security, Network, Services.

Accessing the Cloud – Platforms, Web Applications, Web APIs, Web Browsers.

Cloud Storage – Overview, Cloud Storage Providers, Standards – Application, Client, Infrastructure, Service.

UNIT - III

Software as a Service – Overview, Driving Forces, Company Offerings, Industries

Software plus Services – Overview, Mobile Device Integration, Providers, Microsoft Online.

Developing Applications – Google, Microsoft, Intuit QuickBase, Cast Iron Cloud, Bungee Connect, Development, Troubleshooting, Application Management.
UNIT - IV

Local Clouds and Thin Clients - Virtualization in Your Organization, Server Solutions,
Thin Clients, Case Study: McNeilus Steel.

Migrating to the Cloud - Cloud Services for Individuals, Cloud Services Aimed at the
Mid-Market, Enterprise-Class Cloud Offerings, Migration.

Text Book:-
 Elsenpeter. McGraw-Hill

CSE/IT
425(D)

DIGITAL IMAGE & SPEECH PROCESSING L T P M

4 1 0 100

UNIT-I: (20 Periods)
Speech Processing.
Fundamentals of Digital speech Processing: Introduction, Discrete time signals and
systems, Transform representations of Signals and systems, Z-Transform, Fourier
Transform, The Discrete Fourier transform., Fundamentals of Digital Filters, FIR
systems, IIR systems, Sampling,
UNIT-II: (15 Periods)
Digital Models for Speech signals: The process of speech production, the acoustic theory of speech production, Digital Models for Speech signals.

UNIT-III (15 Periods)
Digital image Fundamentals: Image Sampling and Quantization, Some basic relationship between pixels.
Image Enhancement in spatial domain: Some basic gray level Transformations, Histogram processing, Enhancement using Arithmetic and Logic operations: Basics of Spatial Filtering, Smoothening spatial Filters and Sharpening spatial Filters.
Enhancement in Frequency domain: Smoothening frequency domain filters, Sharpening frequency domain filters, Homomorphic filters.

UNIT-IV: (20 Periods)
Image segmentation: Detection of discontinuities; Edge linking and Boundary detection, Thresholding, Region Based Segmentation:

TEXT BOOKS:

REFERENCE BOOKS:
1. Fundamentals of Speech Recognition, L. Rabiner and B.Juang, Pearson Education.

CSE/IT 461 DATA ENGINEERING LAB L T P M
0 0 3 75

I. Analyzing data with ROLLAP, CUBE.
II. Cube slicing – come up with 2-D view of data.
III. Drill-down or Roll-down- going from summary to more detailed data.
IV. Roll up – summarize data along a dimension hierarchy.
V. Dicing – projecting 2-D view of data.

VII. Create and populate FACT table.

VIII. Building dimensions.

IX. ETL: Extraction Options
 i. Full extraction
 ii. Incremental extraction
 iii. Change Data Capture(CDC)

X. ETL: Transformation Options
 iv. Transformation: during extraction, in staging area, during load, etc.
 v. Multi-state transformation
 vi. Pipelined transformation

XI. ETL: DW Load options
 vii. Loader: SQL(DML)
 viii. Data Pump

XII. DW index design options
 ix. B*tree index – how they work
 x. Bitmapped index – how they work
 xi. NULL value considerations